【题目】甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.
根据图中信息,求:
(1)点Q的坐标,并说明它的实际意义;
(2)甲、乙两人的速度.
【答案】(1)点Q的坐标为(1,0),点Q的意义是:甲、乙两人分别从A,B两地同时出发后,经过1个小时两人相遇;(2)甲、乙的速度分别为6km/h、4km/h.
【解析】
(1)设PQ解析式为y=kx+b,把点P(0,10),代入所设解析式,得到求出k、b的值,即可得出函数解析式,再根据两人相向而行,当相遇时y=0,求得x的值,即可得出点Q的坐标;
(2)分析图象,可知两人从出发到相遇用1小时,甲由相遇点到B用小时,乙走这段路程用1小时,依此可列方程组求出a、b的值,即可得出甲、乙两人的速度.
(1)设PQ解析式为y=kx+b,
把已知点P(0,10),代入得,
解得:
∴y=-10x+10.
当y=0时,x=1,
∴点Q的坐标为(1,0),
点Q的意义是:甲、乙两人分别从A,B两地同时出发后,经过1个小时两人相遇;
(2)设甲的速度为akm/h,乙的速度为bkm/h,
由已知第小时,甲到B地,则乙走1小时路程,甲走小时,
∴
∴
∴甲、乙的速度分别为6km/h、4km/h.
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°.
(1)直线BD是否与⊙O相切?为什么?
(2)连接CD,若CD=5,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程 的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标中,已知A(﹣1,5),B(﹣3,0),C(﹣4,3)
(1)在图中作出△ABC关于y轴对称的图形△A′B′C′;
(2)如果线段AB的中点是P(﹣2,m),线段A'B'的中点是(n﹣1,2.5).求m+n的值.
(3)求△A'B'C的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列一段文字,然后回答下列问题.
已知平面内两点 M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算: MN= .
例如:已知 P(3,1)、Q(1,﹣2),则这两点间的距离 PQ== .
特别地,如果两点 M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐 标轴,那么这两点间的距离公式可简化为 MN=丨 x1﹣x2 丨或丨 y1﹣y2 丨.
(1)已知 A(1,2)、B(﹣2,﹣3),试求 A、B 两点间的距离;
(2)已知 A、B 在平行于 x 轴的同一条直线上,点 A 的横坐标为 5,点 B 的横坐标为﹣1,
试求 A、B 两 点间的距离;
(3)已知△ABC 的顶点坐标分别为 A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC 的形状 吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.
(1)判断直线EF与⊙O的位置关系,并说明理由;
(2)若∠A=30°,求证:DG=DA;
(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+2x﹣3a经过A(1,0)、B(b,0)、C(0,c)三点.
(1)求b,c的值;
(2)在抛物对称轴上找一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com