【题目】如图1,四边形ABCD中,AD∥BC,AB⊥BC,点E在边AB上,∠DEC=900,且DE=EC.
(1)求证:△ADE≌△BEC;
(2)若AD=a,AE=b,DE=c,请用图1证明勾股定理:a2+b2=c2;
(3)线段AB上另有一点F(不与点E重合),且DF⊥CF(如图2),若AD=2,BC=4,求EF的长.
【答案】(1)证明见解析;(2)证明见解析;(3)2.
【解析】试题分析:(1)、根据∠DEC=90°得出∠AED+∠CEB=90°,结合∠ADE+∠AED=90°得出∠ADE=∠CEB,从而说明三角形全等;(2)、根据图形得出△ADE,△DEC,△BEC都是直角三角形,然后根据全等得出BE=a,BC=b,然后根据面积相等的法则得出答案;(3)、根据题意得出△AFD和△BCF相似,设AF=x,则BF=6-x,从而求出x的值,然后得出EF的长度.
试题解析:(1)如图1,∵∠DEC=90°,∴∠AED+∠CEB=90°,∵∠ADE+∠AED=90°,
∴∠ADE=∠CEB,
在△ADE和△BEC中,,∴△ADE≌△BEC(AAS);
(2)、如图1,∵AB⊥BC,∠DEC=90°,∴△ADE,△DEC,△BEC都是直角三角形,
∵AD=a,AE=b,DE=c,且DE=EC,△ADE≌△BEC,∴BE=a,BC=b,
∴(a+b)(a+b)=ab+c2+ab,
整理得:a2+b2=c2;
(3)、如图2,由(1)得:△ADE≌△BEC(AAS),则AD=BE=2,BC=AE=4,
∵DF⊥CF, ∴∠AFD+∠BFC=90°,∵∠BFC+∠BCF=90°,∴∠AFD=∠BCF,又∵∠A=∠B,
∴△AFD∽△BCF,∴,设AF=x,则BF=6﹣x,故,
解得:x1=2,x2=4, ∵点F不与点E重合, ∴x=2,∴EF=6﹣2﹣2=2.
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为G,连结CG.下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值为-1.其中正确的说法是 .(把你认为正确的说法的序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打( )
A. 8折 B. 8.5折 C. 7折 D. 6折
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解我市2019年中考数学学科各分数段成绩分布情况,从中抽取150名考生的中考数学成绩进行统计分析.在这个问题中,样本是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数y=k x+b经过点(﹣3,﹣4)和(0,2).
(1)求k、b的值;
(2)设一次函数图象与x轴、y轴分别交于点A、B,求A、B的坐标.
(3)若P是该函数上的一点,且P的横坐标为,求PO的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,以下结论:
①abc>0;②b2-4ac<0;③9a+3b+c>0;④c+8a<0,其中正确的个数是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com