精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,以BC的中点O为圆心的分别与ABAC相切于DE两点,则的长为(

A.B.C.D.

【答案】C

【解析】

如图,连接OEOAOD,根据切线的性质可得OEACODAB,可证明四边形EADO是矩形,由OE=OD可证明四边形EADO是正方形,根据直角三角形斜边中线的性质可得OA=BC,即可求出OD的长,根据弧长公式求出的长即可得答案.

如图,连接OEOAOD

∵以BC的中点O为圆心的分别与ABAC相切于DE两点,

OEACODAB

∴四边形EADO是矩形,

OE=OD

∴四边形EADO是正方形,

∴∠EOD=90°

∵∠A=90°,点OBC中点,BC=

OA=BC=

OD=OA=2

的长==

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD30DM10

1)在旋转过程中,

①当ADM三点在同一直线上时,求AM的长.

②当ADM三点为同一直角三角形的顶点时,求AM的长.

2)若摆动臂AD顺时针旋转90°,点D的位置由ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C135°CD260,求BD2的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.

(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?

(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1ABO的直径,CO上一点,CDABDEBA廷长线上一点,连接CE,∠ACE=∠ACDK是线段AO上一点,连接CK并延长交O于点F

1)求证:CEO的切线;

2)若ADDK,求证:AKAOKBAE

3)如图2,若AEAK,点GBC的中点,AGCF交于点P,连接BP.请猜想PAPBPF的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形中,点边酌中点,动点边上运动,以为折痕将,折叠得到,连接,若,则的最小值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中华文明,源远流长;中华汉字,寓意深广.为了传承优秀传统文化,某校团委组织了一次全校1000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了200名学生的成绩(成绩取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:

成绩/

频数

频率

10

0.05

20

0.10

30

0.30

80

0.40

请根据所给的信息,解答下列问题:

1__________

2)请补全频数分布直方图;

3)这次比赛成绩的中位数会落在______分数段;

4)若成绩在90分以上(包括90分)的为优等,则该校参加这次比赛的1000名学生中成绩优等的大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平行四边形中,,点在平行四边形的边上,且,连接,若,则线段的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形EFGH的顶点EG分别在菱形ABCD的边AD BC上,顶点FH在菱形ABCD的对角线BD上,若AB=6,∠A=120°,且DE=2,则FH=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,墙对面有一个2m宽的门,另三边用竹篱笆围成,篱笆总长33m.围成长方形的养鸡场除门之外四周不能有空隙.

1)若墙长为18m,要围成养鸡场的面积为150m2,则养鸡场的长和宽各为多少?

2)围成养鸡场的面积能否达到200m2?请说明理由

查看答案和解析>>

同步练习册答案