精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD外侧,作等边三角形ADEACBE相交于点F,则∠CBF为(  )

A.75°B.60°C.55°D.45°

【答案】A

【解析】

根据正方形的性质及等边三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC,进而得出∠CBF

解:∵四边形ABCD是正方形,

AB=AD

又∵△ADE是等边三角形,

AE=AD=DE,∠DAE=60°

AB=AE

∴∠ABE=AEB,∠BAE=90°+60°=150°

∴∠ABE=180°-150°÷2=15°

又∵∠BAC=45°

∴∠BFC=45°+15°=60°

∴∠BFA=180°-60°=120°

∴∠CBF=180°-BCA-BFC=180°-45°-60=75°

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD是平行四边形,点ABx轴上,点CD在第二象限,点MBC中点.已知AB=6AD=8,∠DAB=60°,点B的坐标为(-60).

1)求点D和点M的坐标;

2)如图①,将ABCD沿着x轴向右平移a个单位长度,点D的对应点和点M的对应点恰好在反比例函数x>0)的图像上,请求出a的值以及这个反比例函数的表达式;

3)如图②,在(2)的条件下,过点M作直线l,点P是直线l上的动点,点Q是平面内任意一点,若以PQ为顶点的四边形是矩形,请直接写出所有满足条件的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是(  )

A. 504m2 B. m2 C. m2 D. 1009m2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为a的菱形ABCD中,∠DAB60°,E是异于AD两点的动点,FCD上的动点,满足AE+CFa,△BEF的周长最小值是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC,以AB为直径的⊙O分别与BCAC交于点DE,过点DDFAC于点F.

(1)判断DF与是⊙O的位置关系,并证明你的结论。

(2)若⊙O的半径为4CDF22.5°,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣10),其部分图象如图所示,下列结论:

①4acb2

方程 的两个根是x1=1x2=3

③3a+c0

y0时,x的取值范围是﹣1≤x3

x0时,yx增大而增大

其中结论正确的个数是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AC与BD相交于点O.若 AO=3,∠OBC=30°,求矩形的周长和面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动 实验、猜想与证明

问题情境

1)数学活动课上,小颖向同学们提出了这样一个问题:如图(1),在矩形ABCD中,AB=2BCMN分别是ABCD的中点,作射线MN,连接MDMC,请直接写出线段MDMC之间的数量关系.

解决问题

2)小彬受此问题启发,将矩形ABCD变为平行四边形,其中∠A为锐角,如图(2),AB=2BCMN分别是ABCD的中点,过点CCEAD交射线AD于点E,交射线MN于点F,连接MEMC,则ME=MC,请你证明小彬的结论;

3)小丽在小彬结论的基础上提出了一个新问题:∠BME与∠AEM有怎样的数量关系?请你回答小丽提出的这个问题,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校学生的身高情况,王老师随机抽取该校男生、女生进行抽样调查,已知抽取的样本中,男生、女生人数相同,利用所得数据绘制如下统计图表:

组别

身高

身高情况分组表

根据图表提供的信息,回答下列问题:

1)样本中,女生身高在组的人数有_________人;

2)在上面的扇形统计图中,表示组的扇形的圆心角是_________°

3)已知该校共有男生800人,女生760人,请估计该校身高在之间的学生约有多少人?

查看答案和解析>>

同步练习册答案