【题目】如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
A.AB=BCB.AC⊥BDC.∠ABC=90°D.∠1=∠2
【答案】C
【解析】
根据矩形的判定定理(①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形)逐一判断即可.
A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;
B、∵四边形ABCD是平行四边形,
∴当AC⊥BD时四边形ABCD是菱形,故本选项错误;
C、∵四边形ABCD是平行四边形,AC⊥BD,
∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;
D、∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠2=∠ACB,
∵∠1=∠2,
∴∠1=∠ACB,
∴AB=BC,
∴四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;
故选:C.
科目:初中数学 来源: 题型:
【题目】问题:如图1,在平行四边形ABCD中,点E是BC边的中点,连结AE,点F是线段AE上一点,连结BF并延长,交射线CD于点G.若AF:EF=4:1,求的值.
(1)尝试探究:
如图1,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是.CG和EH的数量关系是,因此= .
(2)类比延伸:
在原题的条件下,若把“AF:EF=4:1”改为“AF:EF=n:1”(n>0),求的值.(用含有n的式子表示)
(3)拓展迁移:
如图2,在四边形ABCD中,CD∥AB,点E是BC的延长线上的一点,AE与BD相交于点F.若AB:CD=a:1(a>0),BC:BE=b:1(b>0),则= .(直接用含有a、b的式子表示,不写解答过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB=6,AC=3,∠BAC=60°,为⊙O上的一段弧,且∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为__________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,并完成相应的任务.
任务:
(1)上述证明过程中的“依据1”和“依据2”分别指什么?
依据1:
依据2:
(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理: (请写出定理名称).
(3)如图(3),四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C是弧BD的中点,求AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少米2?
(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,是线段上的两个动点,且,过点,分别作,的垂线相交于点,垂足分别为,.有以下结论:①;②当点与点重合时,;③;④.其中正确的结论有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD,∠D=60°,△ABC内接于⊙O,⊙O的直径AE交BC于F,DC的延长线交AE的延长线于点G.
(1)求证:DG与⊙O相切;
(2)连接DF,求tan∠FDC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A(12,0),O为坐标原点,P是线段OA上任一点(不含端点O、A).二次函数y1的图象过P、O两点.二次数y2的图象过P、A两点,它的开口均向下,顶点分别为B、C.射线OB与射线AC相交于点D.用当OD=AD=9时,这两个二次函数的最大值之和等于______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com