精英家教网 > 初中数学 > 题目详情

【题目】如图,在中, ,顶点 轴上,顶点在反比例函数的图象上,已知点 的纵坐标是 3,则经过点 的反比例函数的解析式为_____________

【答案】

【解析】

CCDy轴于D,过BBEy轴于E,即可得到△ABE≌△CAD,依据全等三角形的性质以及点C的坐标,即可得到点B的坐标,进而得出经过点B的反比例函数的解析式.

如图所示,过CCDy轴于D,过BBEy轴于E,则∠CDA=AEB=90°,


又∵∠BAC=90°,

∴∠BAE+CAD=ACD+CAD=90°,

∴∠BAE=ACD

又∵AB=CA

∴△ABE≌△CADAAS),

又∵顶点C在反比例函数

的图象上,点C的纵坐标为3

∴点C的横坐标为4

CD=4=AEOD=3

RtACD中,AD=

= =2

BE=AD=2AO=AD+DO=2+3=5

OE=AO-AE=5-4=1

B-21),

∴经过点B的反比例函数的解析式为

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系 xOy 中,直线 l x 轴交于点 A-20),与 y 轴交于点 B.双曲线与直线 l 交于 PQ 两点,其中点 P 的纵坐标大于点 Q 的纵坐标.

1)求点 B 的坐标;

2)当点 P 的横坐标为 2 时,求 k 的值;

3)连接 PO,记POB 的面积为 S,若 ,直接写出 k 的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,设

1)如图1,当点内,

①若,求的度数;

小明同学通过分析已知条件发现:是顶角为的等腰三角形,且,从而容易联想到构造一个顶角为的等腰三角形.于是,他过点,且,连接,发现两个不同的三角形全等:_____________再利用全等三角形及等腰三角形的相关知识可求出的度数

请利用小王同学分析的思路,通过计算求得的度数为_____

②小王在①的基础上进一步进行探索,发现之间存在一种特殊的等量关系,请写出这个等量关系,并加以证明.

2)如图2,点外,那么之间的数量关系是否改变?若改变,请直接写出它们的数量关系;若不变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】13×13的网格图中,已知ABC和点M(1,2).

(1)以点M为位似中心,画出ABC的位似图形A′B′C′,其中A′B′C′ABC的位似比为2;

(2)写出A′B′C′的各顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)与通电时间xmin)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温y(℃)与通电时间xmin)的关系如下图所示,回答下列问题:

1)当0≤x≤8时,求yx之间的函数关系式;

2)求出图中a的值;

3)某天早上720,李老师将放满水后的饮水机电源打开,若他想在800上课前能喝到不超过40℃的温开水,问:他应在什么时间段内接水?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)模型探究:如图1分别为三边上的点,且相似吗?请说明理由.

2)模型应用:为等边三角形,其边长为为边上一点,为射线上一点,将沿翻折,使点落在射线上的点处,且.

①如图2,当点在线段上时,求的值;

②如图3,当点落在线段的延长线上时,求的周长之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰中,,把沿折叠,点的对应点为,连接,使平分,若,则点是(

A.的内心B.的外心C.的内心D.的外心

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足SPAB=S矩形ABCD,则点PA、B两点的距离之和PA+PB的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC 中,AB=AC,点 M BA 的延长线上,点 N BC 的延长线上,过点 C CDAB 交∠CAM 的平分线于点 D

1)如图 1,求证:四边形 ABCD 是平行四边形;

2)如图 2,当∠ABC=60°时,连接 BD,过点 D DEBD,交 BN 于点 E,在不添加任何辅助线的情况下,请直接写出图 2 中四个三角形(不包含CDE),使写出的每个三角形的面积与CDE 的面积相等.

查看答案和解析>>

同步练习册答案