精英家教网 > 初中数学 > 题目详情

【题目】有一直角三角形纸片,C90°,BC6AC8,现将ABC按如图那样折叠,使点A与点B重合,折痕为DE,则CE的长为(  )

A. 2 B. C. D. 4

【答案】B

【解析】

已知,∠C=90°BC=6AC=8,由勾股定理求AB,根据翻折不变性,可知DAE≌△DBE,从而得到BD=ADBE=AE,设CE=x,则AE=8-x,在RtCBE中,由勾股定理列方程求解.

∵△CBE≌△DBE

BD=BC=6DE=CE

RTACB中,AC=8BC=6

AB==10

AD=AB-BD=10-6=4

根据翻折不变性得EDA≌△EDB

EA=EB

∴在RtBCE中,设CE=x

BE=AE=8-x

BE2=BC2+CE2

∴(8-x2=62+x2

解得x=

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(10分)如图,在直角坐标系xOy中,A(﹣1,0)B(3,0),将AB同时分别向上平移2个单位,再向右平移1个单位,得到的对应点分别为DC,连接ADBC.

(1)直接写出点CD的坐标:C D

(2)四边形ABCD的面积为

(3)点P为线段BC上一动点(不含端点),连接PDPO.求证:∠CDP+BOP=OPD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图Rt△ABC∠ACB90°M是边AB的中点CH⊥AB于点HCD平分∠ACB.

(1)求证:∠1∠2.

(2)过点MAB的垂线交CD的延长线于点E连结AEBE.求证:CMEM.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.
(1)求面料和里料的单价;
(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.
①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)
②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某营业厅对手机话费业务有如下的优惠:
优惠规则:
①用户手机账户原有话费不能低于240元;
②办理业务时,首先从手机账户中一次性扣除240元,并把这240元抵为300元话费,然后将这300元话费分12次,在每月的15号等额返还到手机账户;
③每月1号从手机账户中扣除话费49元,当月不再扣除其他任何费用;
④每月1号手机账户的话费余额不足以扣除49元时,视为欠费,则当月不再返还等额的话费.
小明的手机账户中原有话费400元,办理了这项优惠业务,设小明的手机账户中每个月末的话费余额是y(元),月数为x(个),则
(1)每个月等额返还的话费是元,第2个月末的话费余额是元;
(2)求y关于x的函数关系式;
(3)若不续费,小明的手机第几个月会欠费?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:

(1)该调查小组抽取的样本容量是多少?
(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;
(3)请估计该市中小学生一天中阳光体育运动的平均时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,EFAD,∠1=2,∠BAC=70°,求∠AGD的度数。

解:∵EFAD

∴∠2=

又∵∠1=2

∴∠1=3

AB

∴∠BAC+ =180°(

∵∠BAC=70°,∴∠AGD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在五一期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且余30个座位.

(1)求外出旅游的学生人数是多少,单租45座的客车需多少辆?

(2)已知45座的客车每辆租金250元,60座的客车每辆租金300元,为节省租金,并且保证每个学生都有座,决定同时租用两种客车,使得租车总数比单租45座的客车少一辆,问45座的客车和60座的客车分别租多少辆才能使得租金最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:小明遇到这样一个问题:

如图1,ABC,B=2C,ADBC于点D,求证:BC=AB+2BD.

小明利用条件ADBC,CD上截取DH=BD,如图2,连接AH,既构造了等腰ABH,又得到BH=2BD,从而命题得证。

(1)根据阅读材料,证明:BC=AB+2BD

(2)参考小明的方法,解决下面的问题:

如图3,ABC,BAC=90°,ABD=BCE,ABC=DCE,请探究ADBE的数量关系,并说明理由。

查看答案和解析>>

同步练习册答案