精英家教网 > 初中数学 > 题目详情

【题目】某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:

(1)该调查小组抽取的样本容量是多少?
(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;
(3)请估计该市中小学生一天中阳光体育运动的平均时间.

【答案】
(1)解:由题意可得:0.5小时的人数为:100人,所占比例为:20%,

∴本次调查共抽样了500名学生;


(2)解:1.5小时的人数为:500×24%=120(人)

如图所示:


(3)解:根据题意得: ,即该市中小学生一天中阳光体育运动的平均时间约1小时.
【解析】(1)利用0.5小时的人数为:100人,所占比例为:20%,即可求出样本容量;
(2)利用样本容量乘以1.5小时的百分数,即可求出1.5小时的人数,补全占频数分布直方图即可;
(3)根据题意计算出该市中小学生一天中阳光体育运动的平均时间即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,下列说法①a>0;②b2﹣4ac>0;③4a+2b+c>0;④c<0;⑤b>0.其中正确的有( )

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,利用直尺和三角尺过直线外一点画已知直线的平行线,这种画法依据的是____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面内的图形MN,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果PQ两点间的距离有最小值,那么称这个最小值为图形MN间的“闭距离“,记作dMN).

如图,等腰直角三角形ABC的一条直角边AB垂直数轴于点D,斜边AC与数轴交于点E,数轴上点O表示的有理数是0,若ABBC=8,AD=6,OD=2.点O到边BC的距离与线段DB的长相等.

(1)求d(点O,点E);

(2)求d(点O,△ABC).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一直角三角形纸片,C90°,BC6AC8,现将ABC按如图那样折叠,使点A与点B重合,折痕为DE,则CE的长为(  )

A. 2 B. C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC沿射线AB的方向平移2个单位到△DEF的位置,点ABC的对应点分别点DEF

(1)直接写出图中与AD相等的线段.

(2)AB3,则AE______

(3)若∠ABC75°,求∠CFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】画图并填空:(每个小方格的边长为1

1)画出△ABC先向右平移6格,再向下平移2格得到的△A1B1C1

2)线段AA1与线段BB1的关系是:

3)△ABC的面积是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂有甲种原料130kg,乙种原料144kg.现用这两种原料生产出AB两种产品共30件.已知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获利700元;生产每件B产品需甲种原料3kg,乙种原料6kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:

1)生产AB两种产品的方案有哪几种;

2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰RtABCBAC=90°AB=AC,点DABC内部一点,连接ADBDCD,点HBD中点,连接AH,且BAH=∠ACD

(1)如图1,若ADB=90°,求证:DAH=45°

(2)如图2,若ADB90°(1)问中的结论是否成立,若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案