【题目】根据下列条件,能判定△ABC≌△DEF的是( )
A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EF
C.∠B=∠E,∠A=∠D,AC=EFD.AB=DE,BC=EF,∠B=∠E
科目:初中数学 来源: 题型:
【题目】如图:有一块三角形状的土地平均分给四户人家,现有四种不同的分法,如图中,D、E、F分别是BC、AC、AB的中点,G、H分别是BF、AF的中点,其中正确的分法有
A. 1种 B. 2种 C. 3种 D. 4种
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=∠ADC=90°,连接AC、BD,M、N分别是AC、BD的中点,连接MN
(1)求证:MN⊥BD.
(2)若∠DAC=62°,∠BAC=58°,求∠DMB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是( )
A.20°B.30°C.25°D.15°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是( )
A. B. 2- C. 2- D. 4-
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,,,点P是对角线AC上的动点不与点A,C重合,连接PD,作交射线BC于点E,以线段PD,PE为邻边作矩形PEFD.
线段PD的最小值为______;
求证:,并求矩形PEFD面积的最小值;
是否存在这样的点P,使得是等腰三角形?若存在,请求出PE的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用四个长为m,宽为n的相同长方形按如图方式拼成一个正方形.
(1).请用两种不同的方法表示图中阴影部分的面积.
方法①: ;
方法②: .
(2).由 (1)可得出2, ,4mn这三个代数式之间的一个等量关系为: .
(3)利用(2)中得到的公式解决问题:已知2a+b=6,ab=4,试求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com