精英家教网 > 初中数学 > 题目详情
某一电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.
(1)求月销售量y(台)与售价(x元/台)之间的函数关系式;
(2)若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.求售价x的取值范围;
(3)在(2)的条件下,当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
考点:二次函数的应用
专题:
分析:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,即可列出函数关系式;
(2)根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.
(3)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;
解答:解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50台,
则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×
400-x
10
,化简得:y=-5x+2200;

(2)∵供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,
x≥300
-5x+2200≥450

解得:300≤x≤350.
∴y与x之间的函数关系式为:y=-5x+2200(300≤x≤350);

(3)W=(x-200)(-5x+2200),
整理得:W=-5(x-320)2+72000.
∵x=320在300≤x≤350内,
∴当x=320时,最大值为72000,
即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.
点评:本题主要考查对于二次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识,解题的关键是能够从实际问题中整理出二次函数模型,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,点B,F,C,E在同一条直线上,∠A=∠D,FG=GC,若AB=6cm,BC=8cm,CE=DE=3cm,求线段FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+100.(利润=售价-进价)
(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;
(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?
(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.
9x-62
(1)可求得x=
 
,第2014个格子中的数为
 

(2)若前m个格子中所填整数之和p=2015,则m=
 
,若p=2014,则m=
 

(3)若取前3个格子中的任意两个数记作a、b,且a≥b,那么所有的|a-b|的和可以通过计算|9-★|+|9-△|+|★-△|得到,其结果为
 
;若取前9个格子,则所有的|a-b|的和为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

某小商场以每件20元的价格购进一种服装,先试销一周,当售价为38元/件时,每天销量为4件,以后每降价2元/件,则销量增加4件,设销量为t(件),每件的销售价为x(元/件)
(1)试求t与x之间的函数关系式;
(2)在商品不积压且不考虑其它因素的条件下,每件服装的销售定价为多少时,该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注:每件服装销售的毛利润=每件服装的销售价-每件服装的进货价)

查看答案和解析>>

科目:初中数学 来源: 题型:

从2开始的连续偶数相加,它们和的情况如下表:
加数的个数(n)和(S)
12=1×2
22+4=6=2×3
32+4+6=12=3×4
42+4+6+8=20=4×5
52+4+6+8+10=30=5×6
(1)请猜想:2+4+6+…+200=
 

(2)请猜想:2+4+6+…+2n
 

(3)计算:40+42+44+…+402.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把△ABC绕C顺时针旋转35°,得到△A′B′C,若∠BCA′=100°,则∠B′CA=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线y=kx-1(k>0)与双曲线y=
k
x
在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q,作RM⊥x轴于点M,若△OPQ与△PRM的面积是1:4,则k的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

一个多边形有五条对角线,则这个多边形的边数为(  )
A、8B、7C、6D、5

查看答案和解析>>

同步练习册答案