精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AB∥DF,

∴∠ABE=∠FCE,

∵E为BC中点,

∴BE=CE,

在△ABE与△FCE中,

∴△ABE≌△FCE(ASA),

∴AB=FC;


(2)∵AD=2AB,AB=FC=CD,

∴AD=DF,

∵△ABE≌△FCE,

∴AE=EF,

∴DE⊥AF.


【解析】(1)由在ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.

(1)求抛物线的解析式以及顶点坐标;
(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;
(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC= ,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F在线段AE上,∠ACF=∠B.设BD=x.

(1)若点F恰好是AE的中点,求线段BD的长;
(2)若y= ,求y关于x的函数关系式,并写出它的定义域;
(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】发现与探究:如图,△ABC和△DCE中,AC=BC,DC=EC,∠ACB=∠DCE=45°,点B,C,E三点共线,且BC:CE=2:1,连接AE,BD.
(1)在不添加辅助线和字母的情况下,请在图中找出一对全等三角形(用“≌”表示),并加以证明;
(2)求tan∠BDC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处.
(1)①当PC∥QB时,求OQ的长度;
②当PC⊥QB时,求OQ的长.
(2)当折叠后重叠部分为等腰三角形时,求OQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校举办一项小制作评比活动,对初一年级6个班的作品件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1,其中三班的件数是8.
请你回答:
(1)本次活动共有件作品参赛;
(2)经评比,四班和六班分别有10件和2件作品获奖,那么你认为这两个班中哪个班获奖率较高?为什么?
(3)小制作评比结束后,组委会评出了4件优秀作品A、B、C、D.现决定从这4件作品中随机选出两件进行全校展示,请用树状图或列表法求出刚好展示作品B、D的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算:|1﹣ |+3tan30°﹣( -5)0﹣(﹣ 1
(2)解不等式组

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(﹣2,2 ),则点C的坐标为( )

A.( ,1)
B.(1,
C.(1,2)
D.(2,1)

查看答案和解析>>

同步练习册答案