【题目】如图,已知AD、AE分别是Rt△ABC的高和中线,AB=9cm,AC=12cm,BC=15cm,试求:
(1)AD的长度;
(2)△ACE和△ABE的周长的差.
【答案】(1)AD的长度为cm;(2)△ACE和△ABE的周长的差是3cm.
【解析】
(1)利用直角三角形的面积法来求线段AD的长度;
(2)由于AE是中线,那么BE=CE,再表示△ACE的周长和△ABE的周长,化简可得△ACE的周长﹣△ABE的周长=AC﹣AB即可.
解:(1)∵∠BAC=90°,AD是边BC上的高,
∴S△ACB=ABAC=BCAD,
∵AB=9cm,AC=12cm,BC=15cm,
∴AD===(cm),
即AD的长度为cm;
(2)∵AE为BC边上的中线,
∴BE=CE,
∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=12﹣9=3(cm),
即△ACE和△ABE的周长的差是3cm.
科目:初中数学 来源: 题型:
【题目】小明就市电视台的各节目所受欢迎的情况,对本班50名同学进行了一次调查,结果如下:
最受学生欢迎的电视节目
节目 | 人数 |
体育 | 18 |
新闻 | 16 |
综艺 | 8 |
动画 | 5 |
其他 | 3 |
(1)选用适当的统计图描述上表数据;
(2)还能用其他统计图描述吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形中,,,点在边上以每秒的速度从点向点运动,点在边上,以每秒的速度从点出发,在间往返运动,两个点同时出发,当点到达点时停止(同时点也停止).设运动时间为秒,当为何值时,以点、、、为顶点的四边形是平行四边形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图中折线表示芳芳骑自行车离家的距离与时间的关系,她9点离开家,15点回家,请根据图象回答下列问题:
(1)芳芳到达离家最远的地方时,离家________千米;
(2)第一次休息时离家________ 千米;
(3)她在10:00~10:30的平均速度是_________;
(4)芳芳一共休息了_________ 小时;
(5)芳芳返回用了____________小时;
(6)返回时的平均速度是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.在⊙O中. AE直径,AD是弦,B为AE延长线上--点,作BC⊥AD,与AD延长线交于点C.且∠CBD=∠A.
(1)判断直线BD与⊙0的位置关系,并证明你的结论;
(2)若∠A=30 ,OA=6,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,A(a,0),B(0,2)
(1)点(k+1,2k﹣5)关于x轴的对称点在第一象限,a为实数k的范围内的最大整数,求A点的坐标及△AOB的面积;
(2)在(1)的条件下如图1,点P是第一象限内的点,且△ABP是以AB为腰的等腰直角三角形,请直接写出P点坐标;
(3)在(1)的条件下,如图2,以AB、OB的作等边△ABC和等边△OBD,连接AD、OC交于E点,连接BE.
①求证:EB平分∠CED;
②M点是y轴上一动点,求AM+CM最小时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)
(1)画出格点(顶点均在格点上)关于直线对称的;
(2)再将向下平移2单位得 ;
(3)将绕点A顺时针旋转90°得;并求边AB扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“化归与转化的思想”是指在研究解决数学问题时采用某种手段将问题通过变换使之转化,进而使问题得到解决:
(1)我们知道m2+n2=0可以得到m=0,n=0.如果a2+b2+2a﹣4b+5=0,求a、b的值.
(2)已知ax+2017,bx+2015,cx+2016,试问:多项式a2+b2+c2﹣ab﹣ac﹣bc的值是否与变量x的取值有关?若有关请说明理由;若无关请求出多项式的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com