【题目】如图,在△ABC中,∠B=2∠C,以点A为圆心,AB长为半径作弧,交BC于点D,交AC于点G;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线AE交BC于点F,若以点G为圆心,GC长为半径作两段弧,一段弧过点C,而另一段弧恰好经过点D,则此时∠FAC的度数为( )
A.54°B.60°C.66°D.72°
【答案】A
【解析】
连接AD,根据作图过程可得,AE是BD的垂直平分线,DG=CG,AB=AD=AG,设∠C=x,则∠CDG=x,∠AGD=2x,根据∠ADB+∠ADG+∠GDC=2x+2x+x=180°,求出x的值后再根据直角三角形两个锐角互余即可求得∠FAC的度数.
解:如图,连接AD,
根据作图过程可知:
AE是BD的垂直平分线,DG=CG,AB=AD=AG,
设∠C=x,则∠CDG=x,∠AGD=2x,
∴∠ADG=∠AGD=2x,
∵∠B=2∠C,
∴∠B=2x,
∴∠ADB+∠ADG+∠GDC=2x+2x+x=180°,
∴x=36°,
∴∠FAC=90°﹣36°=54°.
故选:A.
科目:初中数学 来源: 题型:
【题目】已知抛物线过点A(m-2,n), B(m+4,n),C(m,).
(1)b=__________(用含m的代数式表示);
(2)求△ABC的面积;
(3)当时,均有,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均在格点上.
(1)边AC的长等于_____.
(2)以点C为旋转中心,把△ABC顺时针旋转,得到△A'B'C',使点B的对应点B'恰好落在边AC上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明作图的方法(不要求证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:
商品 | 甲 | 乙 |
进价(元/件) | ||
售价(元/件) | 200 | 100 |
若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.
(1)求甲、乙两种商品的进价是多少元?
(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为件(),设销售完50件甲、乙两种商品的总利润为元,求与之间的函数关系式,并求出的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校初级中学数学兴趣小组为了解本校学生年龄情况,随机调查了本校部分学生的年龄,根据所调查的学生的年龄(单位:岁),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受调查的学生人数为_______,图①中 的值为 ;
(2)求统计的这组学生年龄数据的平均数、众数和中位数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.
(1)求k和n的值;
(2)求△AOB的面积;
(3)直接写出y1> y2时自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,连接BD,点E为CB边的延长线上一点,点F是线段AE的中点,过点F作AE的垂线交BD于点M,连接ME、MC.
(1)根据题意补全图形,猜想与的数量关系并证明;
(2)连接FB,判断FB 、FM之间的数量关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,∠B=90°,点P从A点开始沿AB边向B点以1cm/s的速度移动,点Q从B点开始沿BC边向C点以2cm/s的速度移动,若点P、Q分别从点A、B同时出发,问过多少秒后,△PBQ的面积分别为8cm2和10cm2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点,将点向右平移6个单位长度,得到点.
(1)直接写出点的坐标;
(2)若抛物线经过点,求的值;
(3)若抛物线与线段有且只有一个公共点时,求抛物线顶点横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com