【题目】已知抛物线过点A(m-2,n), B(m+4,n),C(m,).
(1)b=__________(用含m的代数式表示);
(2)求△ABC的面积;
(3)当时,均有,求m的值.
【答案】(1)b=-2m-2;(2)24;(3).
【解析】
(1)根据A(m-2,n), B(m+4,n)纵坐标一致,结合对称轴即可求解;
(2)先用含m的代数式表示c,再带入A点坐标即可求出n=3,最后利用铅锤法即可求出△ABC的面积;
(3)先用只含m的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.
(1)∵过点A(m-2,n), B(m+4,n),
∴对称轴
∴
(2)∵
∴
把C(m,)代入
∴
∴
把A(m-2,n)代入
得
∴n=3
∴A(m-2,3), B(m+4,3),C(m,)
∴AB=6
C点到x轴的距离为:3﹣(-5)=8,
∴S△ABC=×6×8=24
(3)∵n=3
∴
∴
∴当时
∵
∴由函数增减性知
即
∴当时
由函数增减性知时,
∴
∴(舍)
当时
由函数增减性知时,
∴
∴(舍)
∴
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0).
(1)求该抛物线所表示的二次函数的表达式;
(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x轴于点B,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在反比例函数y=(x>0)的图像上,点B在反比例函数y=(x>0)的图像上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC的面积是6,则k的值为( )
A. 10 B. 12 C. 14 D. 16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,抛物线与x轴交于点A,C(点A在点C的左侧),与y轴交于点B,顶点为D.点Q为线段BC的三等分点(靠近点C).
(1)点M为抛物线对称轴上一点,点E为对称轴右侧抛物线上的点且位于第一象限,当的周长最小时,求面积的最大值;
(2)在(1)的条件下,当的面积最大时,过点E作轴,垂足为N,将线段CN绕点C顺时针旋转90°得到点N,再将点N向上平移个单位长度.得到点P,点G在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H,使点D,P,G,H构成菱形.若存在,请直接写出点H的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分8分,每小题4分)
袋子中装有2个红球,1个黄球,它们除颜色外其余都相同。小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.
(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;
(2)这个游戏规则对双方公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“停课不停学,学习不延期”,某市通过教育资源公共服务平台和有线电视为全市中小学开设在线“空中课堂”,为了解学生每天的学习时间情况,在全市随机抽取了部分初中学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题:
组别 | 学习时间x(h) | 人数(人) |
A | 2.5<x≤3 | 40 |
B | 3<x≤3.5 | 170 |
C | 3.5<x≤4 | 350 |
D | 4<x≤4.5 | |
E | 4.5<x≤5 | 90 |
F | 5小时以上 | 50 |
表1
(1)这次参与问卷调查的初中学生有 人,中位数落在 组.
(2)图3中D组对应的角度是 ,并补全图2 条形统计图.
(3)若某市有初中学生2.8万人,请估计每天参与“空中课堂”学习时间3.5到4.5小时(不包括3.5小时)的初中学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形纸片ABCD中,AD∥BC,∠B=90°,BC=CD=6, ∠C=60°.点E是边AD上一点,连接BE,将△ABE沿BE翻折得到△HBE .
(1)当点B、D、H三点在一直线上时,求线段AE的长;
(2)当点A的对称点H正好落在DC上时,有动点P从点H出发沿线段HB向点B运动,同时动点Q从点B出发沿线段BA向点A运动,速度均为每秒1个单位长度,连接PQ交折痕BE于点M.设运动时间为t秒.
① 探究:当时间t为何值时,△PBM为等腰三角形;
② 连接AM,请直接写出BM+2AM的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠B=2∠C,以点A为圆心,AB长为半径作弧,交BC于点D,交AC于点G;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线AE交BC于点F,若以点G为圆心,GC长为半径作两段弧,一段弧过点C,而另一段弧恰好经过点D,则此时∠FAC的度数为( )
A.54°B.60°C.66°D.72°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com