【题目】如图,抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0).
(1)求该抛物线所表示的二次函数的表达式;
(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x轴于点B,求△ABC的面积.
【答案】(1)y1=﹣(x﹣1)2+4;(2).
【解析】
(1)解答时先根据已知条件求出二次函数的表达式,(2)根据一次函数与抛物线相交的关系算出交点坐标,就可以算出三角形的面积
(1)∵抛物线y1=a(x﹣1)2+4与x轴交于A(﹣1,0),
∴0=a(﹣1﹣1)2+4,得a=﹣1,
∴y1=﹣(x﹣1)2+4,
即该抛物线所表示的二次函数的表达式是y1=﹣(x﹣1)2+4;
(2)由 得
或
∵一次函数y2=x+1的图象与抛物线相交于A,C两点,点A(﹣1,0),
∴点C的坐标为(2,3),
∵过点C作CB垂直于x轴于点B,
∴点B的坐标为(2,0),
∵点A(﹣1,0),点C(2,3),
∴AB=2﹣(﹣1)=3,BC=3,
∴△ABC的面积是=
=
科目:初中数学 来源: 题型:
【题目】某校为了了解家长和学生参与“全国中小学生新冠肺炎疫情防控”专题教育的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了______名学生;
(2)C类所对应扇形的圆心角的度数是_______,并补全条形统计图;
(3)根据抽样调查结果,试估计该校1800名学生中“家长和学生都未参与”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a>0)交x轴于A,B两点(A在B的左侧),交y轴于点C,抛物线的顶点为P,过点B作BC的垂线交抛物线于点D.
(1)若点P的坐标为(-4,-1),点C的坐标为(0,3),求抛物线的表达式;
(2)在(1)的条件下,求点A到直线BD的距离;
(3)连接DC,若点P的坐标为(-,-
),DC∥x轴,则在x轴上方的抛物线上是否存在点M,使∠AMB=∠BDC?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋90°转得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O,…,依此规律,得到等腰直角三角形A2020OB2020,则点B2020的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点A在抛物线y=-x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A作AC⊥l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是( )
A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角△ABC中,∠C=90°,AC=BC=2,P为AC的中点,Q为AB上的一个动点,连接PQ,CQ,则PQ+CQ的最小值为( )
A.2B.3C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E、F两点分别在平行四边形ABCD的边CD、AD上,AE=CF,AE、CF相交于点O.
(1)用尺规作出∠AOC的角平分线OM(保留作图痕迹,不写作法);
(2)求证:OM一定经过B点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线过点A(m-2,n), B(m+4,n),C(m,
).
(1)b=__________(用含m的代数式表示);
(2)求△ABC的面积;
(3)当时,均有
,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均在格点上.
(1)边AC的长等于_____.
(2)以点C为旋转中心,把△ABC顺时针旋转,得到△A'B'C',使点B的对应点B'恰好落在边AC上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明作图的方法(不要求证明).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com