【题目】如图,在11×11的正方形网格中,△TAB的顶点分别为T(1,1),A(2,3),B(4,2).
(1)以点T(1,1)为位似中心,按比例尺(TA′:TA)3:1,在位似中心的同侧将△TAB放大为△TA′B′,放大后点A,B的对应点分别为A′,B′,画出△TA′B′,并写出点A′,B′的坐标;点A′的坐标为 ,点B′的坐标为
(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标为 .
科目:初中数学 来源: 题型:
【题目】已知:在△ABC外分别以AB,AC为边作△AEB与△AFC.
(1)如图1,△AEB与△AFC分别是以AB,AC为斜边的等腰直角三角形,连接EF.以EF为直角边构造Rt△EFG,且EF=FG,连接BG,CG,EC.
求证:①△AEF≌△CGF;②四边形BGCE是平行四边形.
(2)小明受到图1的启发做了进一步探究:
如图2,在△ABC外分别以AB,AC为斜边作Rt△AEB与Rt△AFC,并使∠FAC=∠EAB=30°,取BC的中点D,连接DE,EF后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出的值及∠DEF的度数.
(3)小颖受到启发也做了探究:
如图3,在△ABC外分别以AB,AC为底边作等腰三角形AEB和等腰三角形AFC,并使∠CAF+∠EAB=90°,取BC的中点D,连接DE,EF后发现,当给定∠EAB=α时,两者间也存在一定的数量关系且夹角度数一定,若AE=m,AB=n,请你帮助小颖用含m,n的代数式直接写出的值,并用含α的代数式直接表示∠DEF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,.点从点开始沿边向点以的速度移动,与此同时,点从点开始沿边向点以的速度移动.设、分别从、同时出发,运动时间为,当其中一点先到达终点时,另一点也停止运动.解答下列问题:
(1)经过几秒,的面积等于?
(2)是否存在这样的时刻,使线段恰好平分的面积?若存在,求出运动时间;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.
(1)求抛物线的解析式;
(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当时,求t的值;
(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.
(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;
(2)若菜园面积为384 m2,求x的值;
(3)求菜园的最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的 速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.
(1)当t= 时,PQ∥AB
(2)当t为何值时,△PCQ的面积等于5cm2?
(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),与y轴交点为(0,3),其部分图象如图所示,则下列结论错误的是( )
A. b﹣4ac≥0
B. 关于x的方程ax+bx+c﹣3=0有两个不相等的实数根
C. a﹣b+c=0
D. 当y>0时,﹣1<x<3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.
(1)求该二次函数的解析式;
(2)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB, PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图象经过点C(0,-2),顶点D的坐标为(1,),与轴交于A、B两点.
(1)求抛物线的解析式.
(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.
(3)点F(0,)是轴上一动点,当为何值时,的值最小.并求出这个最小值.
(4)点C关于轴的对称点为H,当取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com