精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形以点为圆心,以任意长为半径作弧分别交两点,再分别以点为圆心,以大于的长为半径作弧交于点,作射线于点,若,则矩形的面积等于__________

【答案】

【解析】

根据矩形的性质得到∠B=BAD=90°,求得∠ACB=30°,由作图知,AP是∠BAC的平分线,得到∠BAE=CAE=30°AB,根据等腰三角形的性质求得AEEC2,解直角三角形得到BC=3,于是得到结论.

由题可知AP是∠BAC的角平分线

∵∠BAC600

∴∠BAE=∠EAC300

AE2 BE2.

AB

∴∠AEB600

又∵∠AEB=∠EAC+ECA

∴∠EAC=∠ECA300

AEEC2

BC3

S矩形ABCD3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框

上,通过推动左侧活页门开关;图2是其俯视图简化示意图,已知轨道 ,两扇活页门的宽 ,固定,当点上左右运动时,的长度不变(所有结果保留小数点后一位).

(1),的长;

(2)当点从点向右运动60时,求点在此过程中运动的路径长.

参考数据:sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π3.14)

1 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABO的一条弦,点C在半径OA上且不与点AO重合,过点CCDOA于点C,交弦AB于点E,交过点BO的切线于点D

1)求证:DBDE

2)若sinABOBE10,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点O为坐标原点,抛物线yax2+bx+cy轴交于点A06),与x轴交于点B(﹣20),C60).

1)直接写出抛物线的解析式及其对称轴;

2)如图2,连接ABAC,设点Pmn)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点PPDAC于点E,交x轴于点D,过点PPGABAC于点F,交x轴于点G.设线段DG的长为d,求dm的函数关系式,并注明m的取值范围;

3)在(2)的条件下,若PDG的面积为

①求点P的坐标;

②设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得ARS为等腰直角三角形?若存在,请直接写出点M及其对应的点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】参照学习函数的过程方法,探究函数的图像与性质,因为,即,所以我们对比函数来探究列表:

-4

-3

-2

-1

1

2

3

4

1

2

4

-4

-2

-1

2

3

5

-3

-2

0

描点:在平面直角坐标系中以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点如图所示:

1)请把轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;

2)观察图象并分析表格,回答下列问题:

①当时,的增大而______;(“增大”或“减小”)

的图象是由的图象向______平移______个单位而得到的;

③图象关于点______中心对称.(填点的坐标)

3)函数与直线交于点,求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了推动全社会自觉尊法学法守法用法,促进全面依法治国,某区每年都举办普法知识竞赛,该区某单位甲、乙两个部门各有员工200人,要在这两个部门中挑选一个部门代表单位参加今年的竞赛,为了解这两个部门员工对法律知识的掌握情况,进行了抽样调查,从甲、乙两个部门各随机抽取20名员工,进行了法律知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息.

a.甲部门成绩的频数分布直方图如下(数据分成6组:40≤x5050≤x6060≤x7070≤x8080≤x9090≤x≤100

b.乙部门成绩如下:

40 52 70 70 71 73 77 78 80 81

82 82 82 82 83 83 83 86 91 94

c.甲、乙两部门成绩的平均数、方差、中位数如下:

平均数

方差

中位数

79.6

36.84

78.5

77

147.2

m

d.近五年该单位参赛员工进入复赛的出线成绩如下:

2014

2015

2016

2017

2018

出线成绩(百分制)

79

81

80

81

82

根据以上信息,回答下列问题:

1)写出表中m的值;

2)可以推断出选择   部门参赛更好,理由为   

3)预估(2)中部门今年参赛进入复赛的人数为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O为△ABC的外接圆,直线MN与⊙O相切于点C,弦BDMNACBD相交于点E

1)求证:∠CAB=CBD

2)若BC=5BD =8,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“切实减轻学生课业负担”是我市作业改革的一项重要举措.某中学为了了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为ABCD四个等级,A1小时以内;B1小时~1.5小时;C1.5小时~2小时;D2小时以上(各边界值忽略不计).根据调查结果绘制了如图所示的两幅不完整的统计图,请根据图中信息解答下列问题:

(1)该校共调查了   名学生;

(2)请将条形统计图补充完整;

(3)表示等级A的扇形圆心角的度数是  

(4)若该学校在校学生人数共2000人,问做课外作业时间在1.5小时~2小时的学生人数大约有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出

1)如图(1),已知中,,求点的最短距离.

问题探究

2)如图(2),已知边长为3的正方形,点分别在边上,且,连接,若点分别为上的动点,连接,求线段长度的最小值.

问题解决

3)如图(3),已知在四边形中,,连接,将线段沿方向平移至,点的对应点为点,点为边上一点,且,连接的长度是否存在最小值?若存在,求出最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案