精英家教网 > 初中数学 > 题目详情
2.根据下列条件,得不到平行四边形的是(  )
A.AB=CD,AD=BCB.AB∥CD,AB=CDC.AB=CD,AD∥BCD.AB∥CD,AD∥BC

分析 根据平行四边形的判定定理分别进行分析即可.

解答 接:A、AB=CD,AD=BC,可根据两组对边分别相等的四边形是平行四边形进行判定,故此选项不合题意;
B、AB∥CD,AB=CD,可根据一组对边平行且相等的四边形是平行四边形进行判定,故此选项不合题意;
C、AB=CD,AD∥BC不能判定是平行四边形,梯形也符合此条件,故此选项错误;
D、AB∥CD,AD∥BC,可根据两组对边分别平行的四边形是平行四边形进行判定,故此选项不合题意;
故选:C.

点评 此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.用算式表示:“10与比它的相反数小4的数的差”应为10-(-10-4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.根据下列条件求二次函数的解析式
(1)抛物线过(-1,0),(3,0),(1,-5)三点,并求出顶点和对称轴;
(2)当x=3时,y最小值=-1,且图象过(0,7);
(3)与x轴交点的横坐标分别是x1=-3,x2=1时,与y轴交点为(0,-2),并求出顶点和对称轴.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.选择适当的方法解以下方程;
(1)3x(x-1)=x(x+5)
(2)(x-3)(x+2)=6
(3)4(x+3)2=25(x-2)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.化简:$\frac{1}{2}+\frac{1}{2×3}+\frac{1}{3×4}+\frac{1}{4×5}$+…+$\frac{1}{n(n+1)}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.先化简,再求值:4xy-[(x2+5xy-y2)-(x2+3xy-2y2)],其中x=-$\frac{1}{4}$,y=$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程:
(1)6(x-5)=-24; 
(2)$\frac{x-1}{2}$-$\frac{2x+3}{3}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,正方形ABCD的边BC的延长线满足CE=DC,CF=AC,连结AF、DE交于点G,连结CG.试证明△DCG是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列四组数中,能作为直角三角形三边长的是(  )
A.8,15,17B.4,5,6C.2,3,4D.1,$\sqrt{2},3$

查看答案和解析>>

同步练习册答案