【题目】计算
(1);
(2);
(3)2x 5y3x 2 y 2x x 3y;
(4)(x+1)2(x-1)2(x2+1)2.
【答案】(1)1;(2)-14x4y2+21x3y4-7x3y2;(3)4x2+17xy-10y2;(4)x8-2x4+1.
【解析】
(1)根据负整数指数幂、零指数幂即可解答本题;
(2)直接利用单项式乘以多项式运算法则计算得出答案.
(3)根据单项式乘多项式,多项式乘多项式的法则计算即可.
(4)先运用平方差公式,再利用完全平方公式即可解答.
(1)
=
=
=1.
(2)(-7x2y)(2x2y-3xy3+xy)
=-14x4y2+21x3y4-7x3y2.
(3)原式=6x2+11xy-10y2-2x2+6xy,
=4x2+17xy-10y2.
(4)原式=[(x+1)(x-1)]2(x2+1) 2=(x2-1) 2 (x2+1) 2=[(x2-1)(x2+1)] 2=(x4-1) 2=x8-2x4+1.
科目:初中数学 来源: 题型:
【题目】定义:若点P为四边形ABCD内一点,且满足∠APB+∠CPD=180°, 则称点P为四边形ABCD的一个“互补点”.
(1)如图1,点P为四边形ABCD的一个“互补点”,∠APD=63°,求∠BPC的度数.
(2)如图2,点P是菱形ABCD对角线上的任意一点.求证:点P为菱形ABCD的一个“互补点”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,AD∥BC,AD=5,B(-3,0),C(9,0),点E是BC的中点,点P是线段BC上一动点,当PB=________时,以点P、A、D、E为顶点的四边形是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为打造书香校园,计划购进甲乙两种规格的书柜放置新购置的图书,调查发现,若购买甲种书柜3个,乙种书柜2个,共需要资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.
(1)甲乙两种书柜每个的价格分别是多少元?
(2)若该校计划购进这两种规格的书柜共20个(其中乙种书柜的数量不少于甲种书柜的数量的).设该校计划购进甲种书柜m个,资金总额为W元.求W与m的函数关系式,并请你为该校设计资金最少的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AC=2,BC=5,点D是BC边上一点且CD=1,点P是线段DB上一动点,连接AP,以AP为斜边在AP的下方作等腰Rt△AOP.当P从点D出发运动至点B停止时,点O的运动路径长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某慈善组织租用甲、乙两种货车共辆,把蔬菜吨,水果吨,全部运到灾区已知辆甲种货车同时可装蔬菜吨,水果吨;一辆乙种货车同时可装蔬菜吨,水果吨.
(1)若将这批货物一次性运到灾区,请写出具体的租车方案?
(2)若甲种货车每辆需付燃油费元,乙种货车每辆需付燃油费元,则应选(1)种的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.
(1)当点F运动到边BC的中点时,求点E的坐标;
(2)连接EF,求∠EFC的正切值;
(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠ACB=90°,AC=BC,直线l经过点C,BD⊥l,AE⊥l,,垂足分别为D、E.
(1)当A、B在直线l同侧时,如图1,
①证明:△AEC≌△CDB;
②若AE=3,BD=4,计算△ACB的面积.(提示:间接求)
(2)当A. B在直线l两侧时,如图2,若AE=3,BD=4,连接AD,BE直接写出梯形ADBE的面积___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,中,,小聪同学利用直尺和圆规完成了如下操作:
①作的平分线交于点;
②作边的垂直平分线,与相交于点;
③连接,.
请你观察图形解答下列问题:
(1)线段,,之间的数量关系是________;
(2)若,求的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com