【题目】将一些数排列成下表中的四列:
第1列 | 第2列 | 第3列 | 第4列 | |
第1行 | 1 | 4 | 5 | 10 |
第2行 | 4 | 8 | 10 | 12 |
第3行 | 9 | 12 | 15 | 14 |
… | … | … | … | … |
(1)第4行第1列的数是多少?直接写出答案;
(2)第17行的四个数之和是多少?请写出适当的过程;
(3)数100所在的行和列分别是多少?直接写出答案.
【答案】(1)16;(2)484;(3) 数100在第10行第1列,第25行第2列,第20行第3列,第46行第4列.
【解析】
(1)观察可知,第1列的数从上往下依次为,,,,可得第4行第1列的数;
(2)第1列的数的数为,第2列的数为,第3列的数为,第4列为,相加即可得到结论;
(3)第3列的数从上往下依次为,,,;第4列的数从上往下依次为,,,,根据各列的变化规律可得100所在的行和列.
解:(1)根据表格中的规律,第一列的数分别为1,4,9,…,分别为12,22,32,…,
∴第4行第1列的数是42=16;
(2)∵第17行第1列的数的数为172,第17行第2列的数为4×17,第17行第3列的数为5×17,第17行第4列为10+2(17﹣1),
∴第17行的四个数之和是172+4×17+5×17+10+2(17﹣1)=484;
(3)∵100=102,
∴数100在第10行第1列;
∵100=4×25,
∴数100在第25行第2列;
∵100=5×20,
∴数100在第20行第3列;
∵100=50×2=(46+4)×2,
∴数100在第46行第4列.
综上所述,数100在第10行第1列,第25行第2列,第20行第3列,第46行第4列.
科目:初中数学 来源: 题型:
【题目】如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠AFC,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°—∠ABD;④∠BDC=∠BAC,其中正确的结论有_____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”,
(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的面积为 ;
(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形为正方形,已知点、,点、在第二象限内.
(1)点的坐标___________;
(2)将正方形以每秒个单位的速度沿轴向右平移秒,若存在某一时刻,使在第一象限内点、两点的对应点、正好落在某反比例函数的图象上,请求出此时的值以及这个反比例函数的解析式;
(3)在(2)的情况下,问是否存在轴上的点和反比例函数图象上的点,使得以、、、四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点、的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形中,连接,为射线上的一个动点(与点不重合),连接,的垂直平分线交线段于点,连接,.
提出问题:当点运动时,的度数是否发生改变?
探究问题:
(1)首先考察点的两个特殊位置:
①当点与点重合时,如图1所示,____________
②当时,如图2所示,①中的结论是否发生变化?直接写出你的结论:__________;(填“变化”或“不变化”)
(2)然后考察点的一般位置:依题意补全图3,图4,通过观察、测量,发现:(1)中①的结论在一般情况下_________;(填“成立”或“不成立”)
(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图3和图4中任选一个进行证明;若不成立,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com