精英家教网 > 初中数学 > 题目详情
9.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.
(1)请你直接写出3个四位“和谐数”,猜想任意一个四位数“和谐数”能否被11整除,并说明理由;
(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.

分析 (1)根据“和谐数”写出四个四位数的“和谐数”;设任意四位数“和谐数”形式为:abba(a、b为自然数),则这个四位数为a×103+b×102+b×10+a=1001a+110b,利用整数的整除得到$\frac{1001a+110b}{11}$=91a+10b,由此可判断任意四位数“和谐数”都可以被11整除;
(2)设能被11整除的三位“和谐数”为:xyx,则这个三位数为x•102+y•10+x=101x+10y,由于$\frac{101x+10y}{11}$=9x+y+$\frac{2x-y}{11}$,根据整数的整除性得到2x-y=0,于是可得y与x的关系式.

解答 解:(1)四位“和谐数”:1221,1331,1111,6666;
任意一个四位“和谐数”都能被11整数,理由如下:
设任意四位数“和谐数”形式为:abba(a、b为自然数),则a×103+b×102+b×10+a=1001a+110b,
∵$\frac{1001a+110b}{11}$=91a+10b
∴四位数“和谐数”abba能被11整数;
∴任意四位数“和谐数”都可以被11整除
(2)设能被11整除的三位“和谐数”为:xyx,则x•102+y•10+x=101x+10y,
$\frac{101x+10y}{11}$=9x+y+$\frac{2x-y}{11}$,
∵1≤x≤4,101x+10y能被11整除,
∴2x-y=0,
∴y=2x(1≤x≤4).

点评 本题考查了因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.灵活利用整数的整除性.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,正方形ABCD中,E为BC上的一点,DF=CF,DC+CE=AE,求证:AF平分∠DAE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,抛物线y=a(x-1)2+4与x轴交于A、B两点,与y轴交于点C,M为抛物线的顶点,直线MD⊥x轴于点D,E是线段DM上一点,DE=1,且∠DBE=∠BMD.
(1)求抛物线的解析式;
(2)P是抛物线上一点,且△PBE是以BE为一条直角边的直角三角形,请求出所有符合条件的P点的坐标;
(3)如图2,N为线段MD上一个动点,以N为等腰三角形顶角顶点,NA为腰构造等腰△NAG,且G点落在直线CM上,若在直线CM上满足条件的G点有且只有一个时,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半轴上,反比例函数y=$\frac{k}{x}$(x>0)的图象经过该菱形对角线的交点A,且与边BC交于点F.若点D的坐标为(6,8),则点F的坐标是(12,$\frac{8}{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t)频数百分比
2≤x<324%
3≤x<41224%
4≤x<51530%
5≤x<61020%
6≤x<7612%
7≤x<836%
8≤x<924%
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,正比例函数y1=k1x的图象与反比例函数y2=$\frac{{k}_{2}}{x}$的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是(  )
A.x<-2或x>2B.x<-2或0<x<2C.-2<x<0或0<x<2D.-2<x<0或x>2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.若式子$\sqrt{x+1}$在实数范围内有意义,则x的取值范围是x≥-1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.计算3+(-3)的结果是(  )
A.6B.-6C.1D.0

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若代数式x2+2x-3的值为0,则2x2+4x+1的值为7.

查看答案和解析>>

同步练习册答案