精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,DBC边上一点,EAD的中点,过点ABC的平行线交BE的延长线于F,且AF=CD,连接CF.

(1)求证:△AEF≌△DEB;

(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.

【答案】(1)证明见解析;(2)四边形ADCF是矩形,证明见解析.

【解析】1)由AFBC得∠AFE=EBD,继而结合∠EAF=EDB、AE=DE即可判定全等;

(2)根据AB=AC,且ADBC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案.

(1)EAD的中点,

AE=DE,

AFBC,

∴∠AFE=DBE,EAF=EDB,

∴△AEF≌△DEB(AAS);

(2)连接DF,

AFCD,AF=CD,

∴四边形ADCF是平行四边形,

∵△AEF≌△DEB,

BE=FE,

AE=DE,

∴四边形ABDF是平行四边形,

DF=AB,

AB=AC,

DF=AC,

∴四边形ADCF是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).

(1)求证:AF∥CE;

(2)当t为何值时,四边形EHFG为菱形;

(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1,线段ABCD相交于点O,连接ADCB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线APCP相交于点P,并且与CDAB分别相交于MN.试解答下列问题:

1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:   

2)仔细观察,在图2中“8字形”的个数:   个;

3)图2中,当∠D50度,∠B40度时,求∠P的度数.

4)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结果,不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P。

(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;

(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试写出∠PAC,∠APB,∠PBD之间的关系,并说明理由。(图3只写结论,不写理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读可以增进人们的知识也能陶治人们的情操。我们要多阅读,多阅读有营养的书。因此我校对学生的课外阅读时间进行了抽样调查,将收集的数据分成ABCDE五组进行整理,整理后的数据如下表(表中信息不完整)。图1和图2是根据整理后的数据绘制的两幅不完整的统计图.

阅读时间分组统计表

组别

阅读时间xh

人数

A

a

B

100

C

b

D

140

E

c

请结合以上信息解答下列问题

1)求abc的值;

2)补全图1所对应的统计图;

3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.

(1)此时梯子顶端离地面多少米?

(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线ABCD,点F为直线AB上一点,G为射线BD上一点.若∠HDG2CDH,∠GBE2EBFHDBE于点E,则∠E的度数为(  )

A.45B.60°C.65°D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,点O为坐标原点,点Ax轴负半轴上,点B、C分别在x轴、y轴正半轴上,且OB=2OA,OBOC=OCOA=2.

(1)求点C的坐标;

(2)点P从点A出发以每秒1个单位的速度沿AB向点B匀速运动,同时点Q从点B出发以每秒3个单位的速度沿BA向终点A匀速运动,当点Q到达终点A时,点P、Q均停止运动,设点P运动的时间为t(t>0)秒,线段PQ的长度为y,用含t的式子表示y,并写出相应的t的范围;

(3)在(2)的条件下,过点P作x轴的垂线PM,PM=PQ,是否存在t值使点O为PQ中点? 若存在求t值并求出此时△CMQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程x2﹣(2m+1)x+2m=0

(1)求证:方程一定有两个实数根;

(2)若方程的两根为x1,x2,且|x1|=|x2|,求m的值.

查看答案和解析>>

同步练习册答案