【题目】如图①,四边形是正方形,点是边的中点, ,且交正方形的外角平分线于点请你认真阅读下面关于这个图形的探究片段,完成所提出的问题.
(1)探究1:小强看到图①后,很快发现这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(个直角三角形,一个钝角三角形)考虑到点E是边BC的中点,因此可以选取AB的中点M(如图②),连接EM后尝试着去证明就行了.随即小强写出了如下的证明过程:
证明:如图②,取AB的中点M,连接EM.
∵
∴
又∵
∴
∵点E、M分别为正方形的边BC和AB的中点,
∴
∴是等腰直角三角形,
∴
又∵是正方形外角的平分线,
∴,∴
∴
∴,
∴
(2)探究2:小强继续探索,如图③,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立小强进一步还想试试,如图④,若把条件“点E是边BC的中点”为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF仍然成立请你选择图③或图④中的一种情况写出证明过程给小强看.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).
(1)求点C的坐标;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.
(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用棋子摆出下列一组图形:
(1)填写下表:
图形编号 | 1 | 2 | 3 | 4 | 5 | 6 |
图形中的棋子 |
(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(用含的代数式表示).
(3)试计算第672个图形棋子的枚数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1是一个长为、宽为的长方形(其中,均为正数,且),沿图中虚线用剪刀均匀分成四块相同小长方形,然后按图2方式拼成一个大正方形.
图1 图2
(1)图2中大正方形的边长为 ;小正方形(阴影部分)的边长为 .(用含、的代数式表示)
(2)仔细观察图2,请你写出下列三个代数式:所表示的图形面积之间的相等关系,并选取适合,的数值加以验证.
(3)已知.则代数式的值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了培养学生勤俭节约的意识,从小养成良好的生活习惯.某校随机抽查部分初中生对勤俭节约的态度(态度分为:赞成、无所谓、反对),并对抽查对象的态度绘制成了图1和图2两个统计图(统计图不完整),请根据图中的信息解答下列问题:
(1)此次共抽查 名学生;
(2)持反对意见的学生人数占整体的 %,无所谓意见的学生人数占整体的 %;
(3)估计该校1200名初中生中,大约有 名学生持反对态度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1)(﹣8)﹣(﹣5)+(﹣2)
(2)﹣12×2+(﹣2)2÷4﹣(﹣3)
(3)化简求值:3(ab2﹣2a2 b)﹣2(ab2﹣a2 b),其中a=-1,b=2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.
(1)求A、B两种型号电动自行车的进货单价;
(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;
(3)在(2)的条件下,该商店如何进货才能获得最大利润?此时最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com