精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在△ABC中,AB=BC=10,以AB为直径作⊙O分别交AC,BC于点D,E,连接DE和DB,过点E作EF⊥AB,垂足为F,交BD于点P.

(1)求证:AD=DE;
(2)若CE=2,求线段CD的长;
(3)在(2)的条件下,求△DPE的面积.

【答案】
(1)解:∵AB是⊙O的直径,
∴∠ADB=90°,即BD⊥AC
∵AB=BC,
∴BD是等腰△ABC中线,
∴AD=DE;
(2)解:∵四边形ABED内接于⊙O,∴∠CED=∠CAB,
∵∠C=∠C,∴△CED∽△CAB,∴
∵AB=BC=10,CE=2,D是AC的中点,
∴CD=
(3)解:延长EF交⊙O于M,

在Rt△ABD中,AD= ,AB=10,
∴BD=3
∵EM⊥AB,AB是⊙O的直径,

∴∠BEP=∠EDB,
∴△BPE∽△BED,

∴BP=
∴DP=BD-BP=
∴S△DPE:S△BPE=DP:BP=13:32,
∵S△BCD= × ×3 =15,S△BDE:S△BCD=BE:BC=4:5,
∴S△BDE=12,
∴S△DPE=
【解析】(1)根据已知条件AB是⊙O的直径得出∠ADB=90°,再根据等腰三角形的三线合一的性质即可得出结论。
(2)根据圆内接四边形的性质证得∠CED=∠CAB,再根据相似三角形的判定证出△CED∽△CAB,得出对应边成比例,建立关于CD的方程,即可求出CD的长。
(3)延长EF交⊙O于M,在Rt△ABD中,利用勾股定理求出BD的长,再证明△BPE∽△BED,根据相似三角形的性质得对应边成比例求出BP的长,然后根据等高的三角形的面积之比等于对边之比,再由三角形面积公式即可求解。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图.在⊙O中. AE直径,AD是弦,B为AE延长线上--点,作BC⊥AD,与AD延长线交于点C.且∠CBD=∠A.

(1)判断直线BD与⊙0的位置关系,并证明你的结论;
(2)若∠A=30 ,OA=6,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE. 求证:四边形BCDE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为给研究制定《中考改革实施方案》提出合理化建议,教研人员对九年级学生进行了随机抽样调查,要求被抽查的学生从物理、化学、政治、历史、生物和地理这六个选考科目中,挑选出一科作为自己的首选科目,将调查数据汇总整理后,绘制出了如图的两幅不完整的统计图,请你根据图中信息解答下列问题:

(1)被抽查的学生共有多少人?
(2)将折线统计图补充完整;
(3)我市现有九年级学生约40000人,请你估计首选科目是物理的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形中,边上的一点,,动点从点出发,以每秒1个单位的速度沿着边向终点运动,连接.设点运动的时间为秒.

1)求的长;

2)当为多少秒时,是直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】化归与转化的思想是指在研究解决数学问题时采用某种手段将问题通过变换使之转化,进而使问题得到解决:

1)我们知道m2+n2=0可以得到m=0n=0.如果a2+b2+2a4b+5=0,求ab的值.

2)已知ax+2017bx+2015cx+2016,试问:多项式a2+b2+c2abacbc的值是否与变量x的取值有关?若有关请说明理由;若无关请求出多项式的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题:
(1) +|1﹣ |﹣π0+
(2)( + )× ﹣(4 ﹣3 )÷2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为了节约用水,采用分段收费标准.若某户居民每月应交水费y()与用水量x(立方米)之间关系的图象如图所示,根据图象回答:

(1)该市自来水收费,每户用水不超过5立方米时,每立方米收费多少元?超过5立方米时,超过的部分每立方米收费多少元?

(2)求出yx之间的关系式.

(3)若某户居民某月用水量为3.5立方米,则应交水费多少元?若某户居民某月交水费17元,则该户居民用水多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A在函数y1=﹣ (x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1 , y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )
A.有1对或2对
B.只有1对
C.只有2对
D.有2对或3对

查看答案和解析>>

同步练习册答案