【题目】在平面直角坐标系中,点是坐标原点,点的坐标是,点的坐标是,点的坐标是,且满足。
(1)请用含的代数式分别表示和;
(2)若,求直线与轴的交点的坐标;
【答案】(1)b=a+2,c=5-a(2)(0,2)
【解析】
(1)根据利用加减消元法即可求出和用含的代数式表示;
(2)根据题意作出图像,根据得到,由这两个三角形底都为OA,故OA边长上的高相等,故BC∥AO,即可求出a的值,然后求出直线AB的解析式,再求出与y轴的交点即可.
(1)
令②×2得2a-4b-2c=-18③
把①+③得5a-5b=-10,解得b=a+2,
把b=a+2代入①得c=5-a
∴b=a+2,c=5-a
(2)如图,∵
∴,
∵这两个三角形底都为OA,故OA边长上的高相等,
故BC∥AO,
设BC解析式为y=-x+b1,
代入B(1,a+2)得y=-x+a+3,
又直线经过C(5-a,0),代入得a=1,
∴点的坐标是,点的坐标是,点的坐标是,
设直线AB解析式为y=kx+b,代入坐标得,解得
∴直线AB的解析式为y=x+2,
∴直线与轴的交点的坐标为(0,2)
科目:初中数学 来源: 题型:
【题目】将正整数1至2019按照一定规律排成下表:
记aij表示第i行第j个数,如a14=4表示第1行第4个数是4.
(1)直接写出a42= ,a53= ;
(2)①如果aij=2019,那么i= ,j= ;②用i,j表示aij= ;
(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2027.若能,求出这5个数中的最小数,若不能说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+3|+(b+3a)2=0.
(1)求点C表示的数;
(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,若AP+BQ=2PQ,求时间t;
(3)若点P从A向右运动,点M为AP中点,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,,点为轴上一动点,.
(1)求点的坐标;
(2)不论点运动到直线上的任何位置(不包括点),三者之间是否都存在某种固定的数量关系,如果有,请利用所学知识找出并证明,如果没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.
(1)求∠ADE的度数;
(2)如图②,将△DEF绕点D顺时针方向旋转角,此时等腰直角三角尺记为, 交AC于点M, 交BC于点N,试判断的值是否随着的变化而变化?如果不变,请求出的值;反之,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系中的点P和图形G,给出如下的定义:若在图形G上存在一点Q ,使得P、Q之间的距离等于1,则称P为图形G的关联点.
(1)当⊙O的半径为1时:
①点, , 中,⊙O的关联点有_____________________.
②直线经过(0,1)点,且与轴垂直,点P在直线上.若P是⊙O的关联点,求点P的横坐标的取值范围.
(2)已知正方形ABCD的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,下列结论正确的有( )个.
①△BED是等边三角形;②AE∥BC; ③△ADE的周长等于BD+BC;④∠ADE=∠DBC.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com