【题目】如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD =∠BCE = 90°,点M为AN的中点,过点E与AD平行的直线交射线AM于点N。
(1)当A,B,C三点在同一直线上时(如图1),求证:AD=NE ;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由。
【答案】(1)见解析;(2)见解析;(3)成立,证明见解析
【解析】
(1)由EN∥AD,点M为AN的中点,利用AAS证得△ADM≌△NEM,从而得到结论;
(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形;
(3)借鉴(2)中的解题经验可得AB=DA=NE,∠ABC=∠NEC=180°-∠CBN,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.
(1)如图1,
∵EN∥AD,
∴∠MAD=∠MNE,∠ADM=∠NEM.
∵点M为AN的中点,
∴AM=MN.
在△ADM和△NEM中,
∴△ADM≌△NEM(AAS).
∴AD=NE;
(2)如图2,
∵BAD和△BCE均为等腰直角三角形,
∴AB=AD,CB=CE,∠CBE=∠CEB=45°.
∵AD∥NE,∴∠DAE+∠NEA=180°.
∵∠DAE=90°,∴∠NEA=90°.
∴∠NEC=135°.
∵A,B,E三点在同一直线上,
∴∠ABC=180°﹣∠CBE=135°.
∴∠ABC=∠NEC.
∵EN∥AD,
∴∠MAD=∠MNE,∠ADM=∠NEM.
∵点M为AN的中点,
∴AM=MN.
在△ADM和△NEM中,
∴△ADM≌△NEM(AAS).
∴AD=NE.
又∵AD=AB,∴AB=NE.
在△ABC和△NEC中,
∴△ABC≌△NEC(SAS).
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
(3)△ACN仍为等腰直角三角形.
如图3,
此时A、B、N三点在同一条直线上.
∵AD∥EN,∠DAB=90°,∴∠ENA=∠DAN=90°.
∵∠BCE=90°,∴∠CBN+∠CEN=360°﹣90°﹣90°=180°.
∵A、B、N三点在同一条直线上,∴∠ABC+∠CBN=180°.
∴∠ABC=∠NEC.
∵△ADM≌△NEM(已证),AD=NE.
又∵AD=AB,∴AB=NE.
在△ABC和△NEC中,
∴△ABC≌△NEC(SAS).
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
(1)求证:∠BDA=∠ECA.
(2)若m=,n=3,∠ABC=75°,求BD的长.
(3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
(4)试探究线段BF,AE,EF三者之间的数量关系。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点 A,B的坐标分别为(0,3),(1,0),△ABC是等腰直角三角形,∠ABC=90°.
(1)图1中,点C的坐标为 ;
(2)如图2,点D的坐标为(0,1),点E在射线CD上,过点B 作BF⊥BE交y轴于点F.
①当点E为线段CD的中点时,求点F的坐标;
②当点E在第二象限时,请直接写出F点纵坐标y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求一次函数y=kx+b和y=的表达式;
(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;
(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动。今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.
(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;
(2)求扇形统计图B等级所对应扇形的圆心角度数;
(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:
(1)求该班的总人数;
(2)将条形图补充完整,并写出捐款总额的众数;
(3)该班平均每人捐款多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八年级班同学小明和小亮,升入九年级时学校采用随机的方式编班,已知九年级共分六个班,小明和小亮被分在同一个班的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示,甲、乙两车从地出发,沿相同路线前往同一目的地,途中经过地.甲车先出发,当甲车到达地时,乙车开始出发.当乙车到达地时,甲车与地相距.设甲、乙两车与地之间的距离为,,,乙车行驶的时间为,,与的函数关系如图②所示.
(1),两地之间的距离为 ;
(2)当为何值时,甲、乙两车相距?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com