精英家教网 > 初中数学 > 题目详情

【题目】下面是小东设计的过圆外一点作这个圆的两条切线的尺规作图过程.

已知:⊙O及⊙O外一点P

求作:直线PA和直线PB,使PA切⊙O于点APB切⊙O于点B

作法:如图,

①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点MN

②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B

③作直线PA和直线PB.

所以直线PAPB就是所求作的直线.

根据小东设计的尺规作图过程,

1)使用直尺和圆规,补全图形;(保留作图痕迹)

2)完成下面的证明.

证明:∵OP是⊙Q的直径,

OAP=∠OBP________° )(填推理的依据).

PAOAPBOB

OAOB为⊙O的半径,

PAPB是⊙O的切线.

【答案】1)补全图形见解析;(2)90;直径所对的圆周角是直角.

【解析】

1)根据题中得方法依次作图即可;

2)直径所对的圆周角是直角,据此填写即可.

(1)补全图形如图

2)∵直径所对的圆周角是直角,

∴∠OAP=∠OBP=90°,

故答案为:90;直径所对的圆周角是直角,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】山西省第十五届运动会乒乓球比赛于2018813日上午在山西省体育博物馆的比赛场馆内正式拉开了帷幕.第十五届运动会竞技体育组乒乓球项目产生的决赛运动员名单中太原市共27人,其中甲组有甲、乙、丙、丁四名女子运动员,若进行一次乒乓球单打比赛,要通过抽签从中选出两名运动员打第一场比赛.

1)若已确定甲打第一场,再从其余三名运动员中随机选取一位,求恰好选中乙的概率;

2)若两名运动员都不确定,请用树状图法或列表法,求恰好选中甲、乙两名运动员的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高15米的测角仪测得古树顶端H的仰角,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角,点ABC三点在同一水平线上.

1)求古树BH的高;

2)求教学楼CG的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了提高学生身体素质,组织学生参加乒乓球、跳绳、羽毛球、篮球四项课外体育活动,要求学生根据自己的爱好只选报其中一项.学生会随机抽取了部分学生的报名表,并对抽取的学生的报名情况进行统计,绘制了两幅统计图(如图,不完整),请你结合图中的信息,解答下列问题:

1)抽取的报名表的总数是多少?

2)将两个统计图补充完整(不写计算过程)

3)该校共有200人报名参加这四项课外体育活动,选报羽毛球的大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼AB高16m,远处有一塔CD,某人在楼底B处测得塔顶C的仰角为38.5°,在楼顶A处测得塔顶的仰角为22°,求塔高CD的高及大楼与塔之间的距离BC的长.

(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,以AB为直径的⊙O与边BC交于点D,DEAC,垂足为E,交AB的延长线于点F.

(1)求证:EF是⊙O的切线;

(2)若∠C=60°,AC=12,求的长.

(3)若tanC=2,AE=8,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O为正方形ABCD的对角线BD的中点,对角线BD分别交AHCF于点PQ.在正方形EFGHEHFG两边上分别取点MN,且MN经过点O,若MH3MEBD2MN4 .则△APD的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点轴正半轴上,,点中点,点在射线上,把线段绕点顺时针旋转得到线段,设点的横坐标为.请根据题意画出图形并完成下列问题:

1)求的长;

2)设点的横坐标为,求的关系式;

3)在(2)的条件下,作点关于直线的对称点,连接,当为等腰三角形时,求点的横坐标的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从20142018年,这两家公司中销售量增长较快的是_____公司(”)

查看答案和解析>>

同步练习册答案