【题目】如图1,两块直角三角纸板(Rt△ABC和Rt△BDE)按如图所示的方式摆放(重合点为B),其中∠BDE=∠ACB=90°,∠ABC=30°,BD=DE=AC=2.将△BDE绕着点B顺时针旋转.
(1)当点D在BC上时,求CD的长;
(2)当△BDE旋转到A,D,E三点共线时,画出相应的草图并求△CDE的面积
(3)如图2,连接CD,点G是CD的中点,连接AG,求AG的最大值和最小值.
【答案】(1)2﹣2;(2)1;(3)AG的最小值为﹣1,AG的最大值为+1
【解析】
(1)如图1中,根据CD=BC﹣BD,只要求出BC即可解决问题;
(2)分两种情形分别求解,由三角形的面积公式可解决问题;
(3)如图4中,取BC的中点H,连接GH.由CG=GD,CH=HB,推出HG=BD=1,可得点G的运动轨迹是以H为圆心1为半径的圆,根据点与圆的位置关系即可解决问题;
解:(1)如图1中,
在Rt△ABC中,∵∠C=90°,AC=2,∠ABC=30°,
∴BC=AC÷tan30°=2,
∵BD=2,
∴CD=BC﹣BD=2﹣2.
(2)如图2中,当A、D、E共线时,易证四边形ACBD是矩形,
∴S△CDE=×DE×CA=×2×2=2.
如图3中,当A、E、D共线时,作CH⊥AD于H.
在Rt△ADB中,∵AB=2BD,
∴∠BAD=30°,
∵∠CAB=60°,
∴∠CAH=30°,
∴CH=AC=1,
∴S△CDE=×DE×CH=×2×1=1.
(3)如图4中,取BC的中点H,连接GH.
∵CG=GD,CH=HB,
∴HG=BD=1,
∴点G的运动轨迹是以H为圆心1为半径的圆,
在Rt△ACH中,AH===,
∴AG的最小值=AH﹣GH=﹣1,
AG的最大值=AH+GH=+1
科目:初中数学 来源: 题型:
【题目】在不透明的布袋中装有1个红球,2个白球,它们除颜色外其余完全相同.
(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个白球的概率;
(2)若在布袋中再添加a个白球,充分搅匀,从中摸出一个球,使摸到红球的概率为,试求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=﹣x2+2mx﹣m2+1的对称轴是直线x=1.
(1)求抛物线的表达式;
(2)点D(n,y1),E(3,y2)在抛物线上,若y1<y2,请直接写出n的取值范围;
(3)设点M(p,q)为抛物线上的一个动点,当﹣1<p<2时,点M关于y轴的对称点都在直线y=kx﹣4的上方,求k的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中,的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
以原点为对称中心,画出的中心对称图形.
以原点为位似中心,在原点的另一侧画出的位似三角形,与的位似比为;
的面积________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x2+(a+3)x+a+1=0是关于x的一元二次方程.
(1)求证:方程总有两个不相等的实数根;
(2)若方程的一个实数根为1,求实数a的值和另一个实数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;
(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.
①求证:△ABC∽△DCA;②求证:△ABC是比例三角形;
(3)如图2,在(2)的条件下,当∠ADC=90°时,求出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半径为5的⊙A中,弦BC,ED所对的圆心角分是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则圆心A到弦BC的距离等于( )
A.B.C.4D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com