精英家教网 > 初中数学 > 题目详情

【题目】已知四边形ABCD中,EF分别是ABAD边上的点,DECF交于点G

(1)如图①,若四边形ABCD是矩形,且DE⊥CF,求证

(2)如图②,若四边形ABCD是平行四边形,试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;

3)如图③,若BA=BC=4DA=DC=6,∠BAD90°DECF,请直接写出的值.

【答案】(1)(2)见解析;(3)

【解析】分析:(1)根据矩形性质得出∠A=FDC=90°,求出∠CFD=AED,证出AED∽△DFC即可;

(2)当∠B+EGC=180°时,成立,证DFG∽△DEA,得出,证CGD∽△CDF,得出,即可得出答案;

(3)过CCNADN,CMABAB延长线于M,连接BD,设CN=x,BAD≌△BCD,推出∠BCD=A=90°,证BCM∽△DCN,求出CM=,在RtCMB中,由勾股定理得出BM2+CM2=BC2,代入得出方程(x-4)2+(2=42,求出CN=,证出AED∽△NFC,即可得出答案.

(1)证明:∵四边形ABCD是矩形,∴∠A=ADC=90°.

∴∠ADE+CDE=90°.

DECF,∴∠DCF+CDE=90°.

∴∠ADE=DCF.

∴△ADE∽△DCF,

(2)当∠B+EGC=180°时,成立.

证明如下:在AD的延长线上取点M,使CM=CF,则∠CMF=CFM.

ABCD,ADBC,∴∠A=CDM. ,CFM=FCB.

∵∠B+EGC=180°,∴∠FCB+BEG=180°.

∵∠AED+BEG=180°,∴∠AED=FCB.

∴∠CMF=AED.

∴△ADE∽△DCM.

.即

(3)

CCNADN,CMABAB延长线于M,连接BD,设CN=x,

∵∠BAD=90°,即ABAD,

∴∠A=M=CNA=90°,

∴四边形AMCN是矩形,

AM=CN,AN=CM,

∵在BADBCD中,

∴△BADBCD(SSS),

∴∠BCD=A=90°,

∴∠ABC+ADC=180°,

∵∠ABC+CBM=180°,

∴∠MBC=ADC,

∵∠CND=M=90°,

∴△BCM∽△DCN,

CM=

RtCMB中,CM=,BM=AM-AB=x-4,由勾股定理得:BM2+CM2=BC2

(x-4)2+(2=42

x=0(舍去),x=

CN=

∵∠A=FGD=90°,

∴∠AED+AFG=180°,

∵∠AFG+NFC=180°,

∴∠AED=CFN,

∵∠A=CNF=90°,

∴△AED∽△NFC,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读理解:若 为数轴上三点,若点的距离是点的距离倍,我们就称点的巧点. 为数轴上三点,若点的距离是点 的距离一半,我们就称点的妙点.如图,点表示的数为,点表示的数为,表示的点到点的距离是,到点的距离是,那么点的巧点,点的妙点.

知识运用:

(1)如图 1,点表示的数是,点表示的数是,点表示的数是,那么点是(( )

A.巧点 B. 妙点 C. 无法确定

(2)如图 2为数轴上两点,点所表示的数为,点所表示的数为,则(的巧点表示的数是

拓展提升

(3)如图 3为数轴上两点,点所表示的数为,点所表示的数为.现有一只电子蚂蚁P从点 出发,以每秒单位的速度向右运动,到达点停止. 当经过几秒时, 其有一个点为其余两点的巧点? (请直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.

(1)求梯子底端B外移距离BD的长度;

(2)猜想CE与BE的大小关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BAx轴,AC是射线.

(1)当x30,求y与x之间的函数关系式;

(2)若小李4月份上网20小时,他应付多少元的上网费用?

(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y= (k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点BBMx轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.

(1)求该反比例函数和一次函数的解析式;

(2)连接MC,求四边形MBOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人各射击次,甲所中的环数是,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是(

A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定

C.甲,乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若a+b2,则称ab是关于1的平衡数.

1)①3   是关于1的平衡数;②4x   是关于1的平衡数(用含x的代数式表示).

2)若a2x23x2+x)﹣4b2x[3x﹣(4x+x2)﹣2],判断ab是否是关于1的平衡数,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校羽毛球队需要购买6支羽毛球拍和x盒羽毛球,羽毛球拍市场价为200/支,羽毛球为30/盒.甲商场优惠方案为:所有商品9折.乙商场优惠方案为:买1支羽毛球拍送1盒羽毛球,其余原价销售.

大于时,分别用含的代数式表示在甲商场和乙商场购买所有物品的费用.

时,请你通过计算说明选择哪个商场购买比较省钱.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的不等式x﹣1.

(1)当m=1时,求该不等式的解集;

(2)m取何值时,该不等式有解,并求出解集.

查看答案和解析>>

同步练习册答案