【题目】如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E,连接AE.
(1)若D为AC的中点,连接DE,证明:DE是⊙O的切线;
(2)若BE=3EC,求tan∠ABC.
【答案】见解析
【解析】试题分析:(1)要证明DE是⊙O的切线,只要证明等于90°即可,由题可得 =90°,从题上条件可得, ,所以可以得出=90°,从而得出要求证结论。(2)BE=3EC,要想利用这个条件,可放在ECA和EAB中,证明ECAEAB,即可得到对应边成比例,进而得到AE、EC、EB三者之间的关系,再利用BE=3EC,求得tan∠ABC。
试题解析:证明:(1)连接OE,
∵AB是⊙O的直径,AC是圆⊙O的切线,
∴AE⊥BC,AC⊥AB,
在直角△AEC中,
∵D为AC的中点,
∴DE=DC,∴∠DEC=∠DCE,
∵∠OEB=∠OBE,∠ABC+∠ACB=90°,
∴∠DEC+∠OEB=∠DCE+∠OBE=90°,
∴∠DEO=180°﹣90°=90°,∴OE⊥DE,
∴DE 是⊙O的切线;
(2)在直角△EAC与直角△EBA中,
∵∠EAC+∠EAB=90°,∠EBA+∠EAB=90°,
∴∠EAC=∠EBA,
∴△EAC∽△EBA,
∴,EA2=EBEC
设EC=1,则EB=3,
EA2=EBEC=3, ,
在直角△AEB中, .
科目:初中数学 来源: 题型:
【题目】如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m,设AD的长为m,DC的长为m.
(1)求与之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个粮仓,其顶部是一个圆锥,底部是一个圆柱.
(1)画出粮仓的三视图;
(2)若这个圆锥的底面周长为32 m,母线长为7 m,为防雨需要在粮仓顶部铺上油毡,则至少需要多少油毡(油毡接缝重合部分不计)?
(3)若这个圆柱的底面圆半径为8 m,高为5 m,粮食最多只能装至圆柱同样高,则这个粮仓最多可以存放多少粮食(结果保留π)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系。
小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.
(1)求这个二次函数的解析式;
(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;
(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c与y轴交于点C,与x轴交于点A(x1,0)、B(x2,0)(x1<x2),顶点M的纵坐标为-4,若x1、x2是方程x2-2(m-1)x+m2-7=0的两个根,且x12+x22=10.
①求A、B两点的坐标;
②求抛物线的关系式及点C的坐标;
③在抛物线上是否存在点P,使△ABP的面积等于四边形ACMB面积的2倍?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com