【题目】如图二次函数的图象与轴交于点和两点,与轴交于点,点、是二次函数图象上的一对对称点,一次函数的图象经过、
(1)求二次函数的解析式;
(2)写出使一次函数值大于二次函数值的的取值范围;
(3)若直线与轴的交点为点,连结、,求的面积;
【答案】(1);(2)或;(3)4.
【解析】
(1)直接将已知点代入函数解析式求出即可;
(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x的取值范围;
(3)分别得出EO,AB的长,进而得出面积.
(1)∵二次函数与轴的交点为和
∴设二次函数的解析式为:
∵在抛物线上,
∴3=a(0+3)(0-1),
解得a=-1,
所以解析式为:;
(2)=x22x+3,
∴二次函数的对称轴为直线;
∵点、是二次函数图象上的一对对称点;
∴;
∴使一次函数大于二次函数的的取值范围为或;
(3)设直线BD:y=mx+n,
代入B(1,0),D(2,3)得,
解得:,
故直线BD的解析式为:y=x+1,
把x=0代入得,y=3,
所以E(0,1),
∴OE=1,
又∵AB=4,
∴S△ADE=×4×3×4×1=4.
科目:初中数学 来源: 题型:
【题目】如图,Rt△FHG中,H=90°,FH∥x轴,,则称Rt△FHG为准黄金直角三角形(G在F的右上方).已知二次函数的图像与x轴交于A、B两点,与y轴交于点E(0,),顶点为C(1,),点D为二次函数图像的顶点.
(1)求二次函数y1的函数关系式;
(2)若准黄金直角三角形的顶点F与点A重合、G落在二次函数y1的图像上,求点G的坐标及△FHG的面积;
(3)设一次函数y=mx+m与函数y1、y2的图像对称轴右侧曲线分别交于点P、Q. 且P、Q两点分别与准黄金直角三角形的顶点F、G重合,求m的值并判断以C、D、Q、P为顶点的四边形形状,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=120°,M为BC边上一动点(M不与B、C重合)
(1)如图1,若∠MAC=45°,求;
(2)如图2,将CM绕点C顺时针旋转60°至CN,连接BN,T为BN的中点,连接AT.
①求证:AM=2AT;
②当AB=AC=2时,直接写出CM+4AT的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接与⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF。
(1)若∠CAD=α,求∠BAC(用含α的代数式表示);
(2)求证:CF是⊙O的切线。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠C=90°,以AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.
(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;
(2)如图②,若点F为弧AD的中点,⊙O的半径为2,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某兴趣小组想借助如图所示的直角墙角(两边足够长),用长的篱笆围成一个矩形花园(篱笆只围、两边).
(1)若围成的花园面积为,求花园的边长;
(2)在点处有一颗树与墙,的距离分别为和,要能将这棵树围在花园内(含边界,不考虑树的粗细),又使得花园面积有最大值,求此时花园的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:若关于x的一元二次方程ax2+bx+c=0的两个非零实数根分别为x1,x2,则x1+x2=﹣,x1x2=.
解决下列问题:已知关于x的一元二次方程(x+n)2=6x有两个非零不等实数根x1,x2,设m=,
(Ⅰ)当n=1时,求m的值;
(Ⅱ)是否存在这样的n值,使m的值等于?若存在,求出所有满足条件的n的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是中边的中点,于,以为直径的经过,连接,有下列结论:①;②;③;④是的切线.其中正确的结论是( )
A.①②B.①②③C.②③D.①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:
某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com