【题目】如图,已知∠AOB=60°,∠AOB的边OA上有一动点P,从距离O点18cm的点M处出发,沿线段MO、射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为lcm/s;P、Q同时出发,同时射线OC绕着点O从OA上以每秒5°的速度顺时针旋转,设运动时间是t(s).
(1)当点P在MO上运动时,PO=______cm(用含t的代数式表示);
(2)当点P在线段MO上运动时,t为何值时,OP=OQ?此时射线OC是∠AOB的角平分线吗?如果是请说明理由.
(3)在射线OB上是否存在P、Q相距2cm?若存在,请求出t的值并求出此时∠BOC的度数;若不存在,请说明理由.
【答案】(1)(18-2t);(2)详见解析;(3)t=16,∠BOC=20°或t=20,∠BOC=40°.
【解析】
(1)先确定出PM=2t,即可得出结论;
(2)先根据OP=OQ建立方程求出t=6,进而求出∠AOC=30°,即可得出结论;
(3)分P、Q相遇前相距2cm和相遇后2cm两种情况,建立方程求解,接口得出结论.
解:(1)当点P在MO上运动时,由运动知,PM=2t,
∵OM=18cm,
∴PO=OM-PM=(18-2t)cm,
故答案为:(18-2t);
(2)由(1)知,OP=18-2t,
当OP=OQ时,则有18-2t=t,
∴t=6
即t=6时,能使OP=OQ,
∵射线OC绕着点O从OA上以每秒5°的速度顺时针旋转,
∴∠AOC=5°×6=30°,
∵∠AOB=60°,
∴∠BOC=∠AOB-∠AOC=30°=∠AOC,
∴射线OC是∠AOB的角平分线,
(3)分为两种情形.
当P、Q相遇前相距2cm时,
OQ-OP=2
∴t-(2t-18)=2
解这个方程,得t=16,
∴∠AOC=5°×16=80°
∴∠BOC=80°-60°=20°,
当P、Q相遇后相距2cm时,OP-OQ=2
∴(2t-18)-t=2
解这个方程,得t=20,
∴∠AOC=5°×20=100°
∴∠BOC=100°-60°=40°,
综合上述t=16,∠BOC=20°或t=20,∠BOC=40°.
科目:初中数学 来源: 题型:
【题目】定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为y= .
(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;
(2)已知二次函数y=﹣x2+4x﹣ .①当点B(m, )在这个函数的相关函数的图象上时,求m的值;
②当﹣3≤x≤3时,求函数y=﹣x2+4x﹣ 的相关函数的最大值和最小值;
(3)在平面直角坐标系中,点M,N的坐标分别为(﹣ ,1),( ,1),连结MN.直接写出线段MN与二
次函数y=﹣x2+4x+n的相关函数的图象有两个公共点时n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.
(1)求证:AB是⊙O的切线.
(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD= ,求 的值.
(3)在(2)的条件下,设⊙O的半径为3,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王老师购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示,根据图中的数据(单位:m),解答下列问题:
①写出用含x、y的整式表示的地面总面积;
②若x=4m,y=1.5m,铺1m2地砖的平均费用为80元,求铺地砖的总费用为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为_____度;
(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,我们称这个正方形为此函数图象的“伴侣正方形”.
例如:在图1中,正方形ABCD是一次函数y=x+1图象的其中一个“伴侣正方形”.
(1)如图1,若某函数是一次函数y=x+1,求它的图象的所有“伴侣正方形”的边长;
(2)如图2,若某函数是反比例函数 (k>0),它的图象的“伴侣正方形”为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数的解析式;
(3)如图3,若某函数是二次函数y=ax2+c(a≠0),它的图象的“伴侣正方形”为ABCD,C,D中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB是直径,直线MN过点B,且∠MBC=∠BAC.半径OD⊥BC,垂足为H,AD交BC于点G,DE⊥AB于点E,交BC于点F.
(1)求证:MN是⊙O的切线;
(2)求证:DE= BC;
(3)若tan∠CAG= ,DG=4,求点F到直线AD的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com