【题目】如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=( )
A.4
B.5
C.4
D.6
科目:初中数学 来源: 题型:
【题目】细心观察图,认真分析各式,然后解答问题:
;
;
;
(1)请用含(为正整数)的等式表示上述交化规律:______;
(2)观察总结得出结论:直角三角形两条直角边与斜边的关系,用一句话概括为:______;
(3)利用上面的结论及规律,请在图中作出等于的长度;
(4)若表示三角形面积,,,,计算出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.
求证:AF平分∠BAC.
【答案】证明见解析.
【解析】试题分析:先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.
试题解析:证明:∵AB=AC(已知),
∴∠ABC=∠ACB(等边对等角).
∵BD、CE分别是高,
∴BD⊥AC,CE⊥AB(高的定义).
∴∠CEB=∠BDC=90°.
∴∠ECB=90°∠ABC,∠DBC=90°∠ACB.
∴∠ECB=∠DBC(等量代换).
∴FB=FC(等角对等边),
在△ABF和△ACF中,
,
∴△ABF≌△ACF(SSS),
∴∠BAF=∠CAF(全等三角形对应角相等),
∴AF平分∠BAC.
【题型】解答题
【结束】
23
【题目】如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.
(1)求证:CD=BE;
(2)已知CD=2,求AC的长;
(3)求证:AB=AC+CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,按这些规律,第50个有序数对是( )
A. (3,8)B. (4,7)C. (5,6)D. (6,5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将一块含角的三角板ABO的一边BO放在直线MN上,AB边在直线MN的上方,其中,另一块含角的三角板POQ的一边OQ在直线MN上,另一边OP在直线MN的下方.
现将图1中的三角板POQ绕点O按顺时针方向旋转,当直线MN恰好为的平分线时,如图2所示,则的度数______度;
继续将图2中的三角板绕点O按顺时针方向旋转至图3的位置,使得边OA落在的内部,且AO恰好为的平分线时,求的度数;
在上述直角三角板从图1按顺时针方向旋转至图位置为止,这个过程中,若三角板POQ绕点O以每秒的速度匀速旋转,当三角板POQ的OP边或OQ边所在直线平分,则求此时三角板POQ绕点O旋转的时间t的值请直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的顶点B在原点O,直角边BC在x轴的正半轴上,∠ACB=90°,点A的坐标为(3, ),点D是BC边上一个动点(不与点B,C重合),过点D作DE⊥BC交AB边于点E,将∠ABC沿直线DE翻折,点B落在x轴上的点F处当△AEF为直角三角形时,点F的坐标是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一块直角三角板放置在锐角上,使得该三角板的两条直角边恰好分别经过点
(1)如图①,若时,点在内,则 度,____度, 度;
(2)如图②,改变直角三角板的位置,使点在内,请探究与之间存在怎样的数量关系,并验证你的结论;
(3)如图③,改变直角三角板的位置,使点在外,且在边的左侧,直接写出三者之间存在的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com