【题目】如图,一张四边形纸片ABCD,AB=20,BC=16,CD=13,AD=5,对角线AC⊥BC.
(1)求AC的长;
(2)求四边形纸片ABCD的面积;
(3)若将四边形纸片ABCD沿AC剪开,拼成一个与四边形纸片ABCD面积相等的三角形,直接写出拼得的三角形各边高的长.
【答案】(1)12;(2)126;(3)12;
【解析】
(1)由勾股定理可直接求得结论;
(2)根据勾股定理逆定理证得∠CAD=90,由于四边形纸片ABCD的面积=S△ABC+S△ACD,根据三角形的面积公式即可求得结论;
(3)由于将四边形纸片ABCD沿AC剪开,得到△ABC和△ACD的相等的边是AC,拼成一个与四边形纸片ABCD面积相等的三角形,只有将AC重合,故可拼成如图所示的图形.
(1)在Rt△ABC中,AC12;
(2)∵AD2+AC2=52+122=133=CD2,∴∠CAD=90°,∴四边形纸片ABCD的面积=S△ABC+S△ACDACBCACAD12×1612×5=126;
(3)如图,∵AB=20,BC=16,CD=13,AD=5,∴BE边上的高AC=12,AB边上的高,AE边上的高.
科目:初中数学 来源: 题型:
【题目】定义新运算:对于任意实数a,b(其中a≠0),都有ab= ﹣ ,等式右边是通常的加法、减法及除法运算,例如23= ﹣ = + =1.
(1)求(﹣2)3的值;
(2)若x2=1,求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读与理解:
三角形中一边中点与这边所对顶点的线段称为三角形的中线。
三角形的中线的性质:三角形的中线等分三角形的面积。
即如图1,AD是中BC边上的中线,则,
理由:,,
即:等底同高的三角形面积相等。
操作与探索:
在如图2至图4中,的面积为a。
(1)如图2,延长的边BC到点D,使CD=BC,连接DA,若的面积为,则(用含a的代数式表示);
(2)如图3,延长的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE,若的面积为,则_________(用含a的代数式表示);
(3)在图3的基础上延长AB到点F,使BF=AB,连接FD,FE,得到(如图4),若阴影部分的面积为,则________(用含a的代数式表示)
(4)拓展与应用:
如图5,已知四边形ABCD的面积是a;E,F,G,H分别是AB,BC,CD的中点,求图中阴影部分的面积?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( )
A.①②③
B.仅有①②
C.仅有①③
D.仅有②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】题目:如图,在△ABC中,点D是BC边上一点,连结AD,若AB=10,AC=17,BD=6,AD=8,解答下列问题:
(1)求∠ADB的度数;
(2)求BC的长.
小强做第(1)题的步骤如下:∵AB2=BD2+AD2
∴△ABD是直角三角形,∠ADB=90°.
(1)小强解答第(1)题的过程是否完整,如果不完整,请写出第(1)题完整的解答过程
(2)完成第(2)题.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形ABCD中,AB=2 ,AC是对角线,∠B=60°,点E在BC边上,点F在DC边上,且∠EAF=60°,AE与DC的延长线交于点M,AF与BC的延长线交于点N.
(1)如图1,若点E为BC边上的中点.
①求证:△ACM≌△ACN;
(2)如图2,若点E为BC边上的任意点(不与点B,C重合),请说明CMNC是一个定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).
(1)AE= (用含t的代数式表示),∠BCD的大小是 度;
(2)点E在边AC上运动时,求证:△ADE≌△CDF;
(3)点E在边AC上运动时,求∠EDF的度数;
(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展,2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.
(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.
(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?
(3)在(2)的前提下,该企业决定投资不超过获得最大利润的在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:(1)∣—6∣+(—3.14)0—()-2+(—2)3 (2)(-a)3a2+(2a4)2÷a3.
(3) (4)(a-2b)(a+b)-3a(a+b)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com