精英家教网 > 初中数学 > 题目详情

【题目】阅读与理解:

三角形中一边中点与这边所对顶点的线段称为三角形的中线。

三角形的中线的性质:三角形的中线等分三角形的面积。

即如图1,AD是中BC边上的中线,则

理由:

即:等底同高的三角形面积相等。

操作与探索:

在如图2至图4中,的面积为a。

(1)如图2,延长的边BC到点D,使CD=BC,连接DA,若的面积为,则(用含a的代数式表示);

(2)如图3,延长的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE,若的面积为,则_________(用含a的代数式表示);

(3)在图3的基础上延长AB到点F,使BF=AB,连接FD,FE,得到(如图4),若阴影部分的面积为,则________(用含a的代数式表示)

(4)拓展与应用:

如图5,已知四边形ABCD的面积是a;E,F,G,H分别是AB,BC,CD的中点,求图中阴影部分的面积?

【答案】(1)a(2)2a;(3)6a;(4)0.5a.

【解析】

(1)根据阅读材料中所得结论易得S1=a;

(2)如图6,连接AD,由阅读材料中中所得结论结合已知条件易得S△ADE=S△ACD=S△ABC=a,由此可得S2=2a;

(3)如图7,连接AD、BE、CF,由(2)中结论可得SCDE=2a,SAEF=2a,SBDF=2a,然后由S3= SCDE+SAEF+SBDF即可求得S3=6a;

(4)如图8,连接OA、OB、OC、OD,则由阅读材料中的结论可得:SAOE=SAOB,SAOH=SAOD,SCOF=SBOC,SCOG=SCOD,将上述等式相交即可得到S阴影=S四边形ABCD=.

(1)如图2,由题意可得:在△ABD中,ACBD边上的中线,

∴S1=SACD=SABC=a;

(2)如图6,连接AD,则由题意可知,AD是△CDE的边CE上的中线,

∴SADE=S△ACD

∵SACD=SABC=a ,

∴S2= SADE+SACD=2a;

(3)如图7,连接AD、BECF,则由(2)中结论可得

SCDE=2a,SAEF=2a,SBDF=2a,

S3= SCDE+SAEF+SBDF

∴S3=2a+2a+2a=6a;

(4)如图8,连接连接OA、OB、OC、OD,

E、F、G、H分别是四边形ABCD四边的中点,

∴SAOE=SAOB,SAOH=SAOD,SCOF=SBOC,SCOG=SCOD

∴S阴影=S△AOE+S△AOH+S△COF+S△COG

=SAOB+SAOD+SBOC+SCOD

=S四边形ABCD

=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:直线AB∥CD,点E,F分别在直线AB,CD上,点M为平面内一点.

(1)如图1,∠AEM,∠M,∠CFM的数量关系为 ;(直接写出答案)

(2)如图2,∠AEM=48°,MN平分∠EMF,FH平分∠MFC,MK∥FH,求∠NMK的度数;

(3)如图3,点P为CD上一点,∠BEF=n·∠MEF,∠PMQ=n·∠PME,过点M作MN∥EF交AB于点N,请直接写出∠PMQ,∠BEF,∠PMN之间的数量关系.(用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中每个小正方形的边长都为l.在方格纸中将三角形ABC经过一次平移后得到三角形A'B'C,图中标出了点C的对应点C'.

(1)请画出平移后的三角形A'B'C’;

(2)连接AA’,CC’,则这两条线段之间的关系是

(3)建立合适的平面直角坐标系,并写出A'、B'、C'的坐标;

(4)三角形A'B'C'的面积为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,以△ABC的边AB为直径的⊙O交边BC于点E,过点E作⊙O的切线交AC于点D,且ED⊥AC.
(1)试判断△ABC的形状,并说明理由;
(2)如图2,若线段AB、DE的延长线交于点F,∠C=75°,CD=2﹣ ,求⊙O的半径和BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(Ⅰ)如图1,在等边中,点上的任意一点(不含端点, ),连结,以为边作等边,并连结求证:

(Ⅱ)【类比探究】

如图2,在等边中,若点延长线上的任意一点(不含端点),其它条件不变,则是否还成立?若成立,请说明理由;若不成立,请写出, , 三者间的数量关系,并给予证明.

(Ⅲ)【拓展延伸】

如图3,在等腰中, ,点上的任意一点(不含端点),连结,以为边作等腰,使,试探究的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于两个不相等的有理数a,b,我们规定符号表示a,b中的较大值,如,请解答下列问题:

(1)_______________;

(2)如果,求x的取值范围;

(3)如果,求x的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,C是半圆O上一点,CD是⊙O的切线,OD∥BC,OD与半圆O交于点E,则下列结论中不一定正确的是(
A.AC⊥BC
B.BE平分∠ABC
C.BE∥CD
D.∠D=∠A

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65, ≈1.41)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:

(1)这次活动一共调查了 名学生;

(2)补全条形统计图;

(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于 度;

4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 人。

查看答案和解析>>

同步练习册答案