精英家教网 > 初中数学 > 题目详情
1.若x1、x2是一元二次方程x2+2x-6=0的两根,则x12+x22=16.

分析 根据根与系数的关系得到x1+x2=-2,x1•x2=-6,再变形x12+x22得到(x1+x22-2x1•x2,然后利用代入计算即可.

解答 解:∵一元二次方程x2+2x-6=0的两根是x1、x2
∴x1+x2=-2,x1•x2=-6,
∴x12+x22=(x1+x22-2x1•x2=(-2)2-2×(-6)=16.
故答案为:16.

点评 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-$\frac{b}{a}$,x1•x2=$\frac{c}{a}$.

练习册系列答案
相关习题

科目:初中数学 来源:2017届江苏省扬州市九年级下学期第一次月考数学试卷(解析版) 题型:判断题

已知:如图,AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点C,BD⊥PD,垂足为D,连接BC。

求证:(1)BC平分∠PBD;

(2)BC2=AB·BD。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.观察下列三行数:
-3,9,-27,81,-243,…
-5,7,-29,79,-245…
-1,3,-9,27,-81…
(1)第一行数按什么规律排列?
(2)第二行、第三行数与第一行数分别有什么关系?
(3)分别取这三行数的第8个数,计算这三个数的和.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在边长为1的正方形组成的6×5方格中,点A,B都在格点上.
(1)在给定的方格中将线段AB平移到CD,使得四边形ABDC是矩形,且点C,D都落在格点上.画出四边形ABDC,并叙述线段AB的平移过程;
(2)在方格中画出△ACD关于直线AD对称的△AED;
(3)直接写出AB与DE的交点P到线段BE的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.抛物线y═ax2+bx-3(a≠0)经过点A(-1,0)和B(3,0).
(1)求抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q.使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)设(1)中的抛物线交y轴于C点,过点C的直线交x轴于点M,交抛物线于点P,若∠MCA=∠MAC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知,点C(4,0)在x轴上,动点A(0,m)在y轴上,线段CB出线段CA绕点C顺时针旋转90°得到,如图所示,∠ACB=90°,AC=BC.
(1)当m=6时,求点B的坐标;
(2)当m=-6时,求点B的坐标;
(3)若点Q(-1,0),当BQ最小时,直接写出m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.关于抛物线y=ax2和y=-ax2(a≠0),给出下列说法:
①两条抛物线都关于x轴对称;
②两条抛物线都关于原点对称;
③两条抛物线各自关于y轴对称;
④两条抛物线有公共的顶点.
其中正确的说法有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是(  )
A.$\frac{DF}{FC}=\frac{AE}{AC}$B.$\frac{AD}{AB}=\frac{EC}{AC}$C.$\frac{AD}{DB}=\frac{DE}{BC}$D.$\frac{DF}{BF}=\frac{EF}{FC}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,在△ABC中,∠ACB=90°,将△ABC绕着点A逆时针旋转得到△ADE,点C落在边AD上,连接BD.若∠DAE=α,则用含α的式子表示∠CBD的大小是(  )
A.αB.90°-αC.$\frac{α}{2}$D.90$°-\frac{α}{2}$

查看答案和解析>>

同步练习册答案