精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料:

,……

=

= =

解答下列问题:

1)在和式中,第6项为______,第n项是__________

2)上述求和的想法是通过逆用分式减法法则,将和式中的各分数转化为两个数之差,使得除首末两项外的中间各项的和为_______,从而达到求和的目的.

3)受此启发,请你解下面的方程:

【答案】(1) ;(2)0 (3)2

【解析】

(1)根据式子的特点可知:n个式子中分子是两个连续

的奇数相乘,n个式子,第一个奇数是从1开始第n个奇

,据此即可写出两个式子;(2)从上面多个式子观察即可得出;(3)参考(1)中的结论将原式方程变形然后化简,再结合分式方程的一般解法进行求解.

1)观察题目信息,可得第6项为,第n项为.

2)从上面多个式子观察即可得出中间各项的和为0.

3)分式方程变形,得

)=,

整理得

=

方程两边同乘2x(x+9),得

2x(x+9)-2x=9x

解得

x=2

故方程的解为x=2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,CDAB的垂直平分线上两点,延长ACDB交于点EAFBCDE于点F

求证:(1)ABCAF的角平分线

(2)∠FAD E

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:抛物线 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点P为线段BC上一点,过点P作直线ι⊥x轴于点F,交抛物线 于点E.

(1)求A、B、C三点的坐标;
(2)当点P在线段BC上运动时,求线段PE长的最大值;
(3)当PE取最大值时,把抛物线 向右平移得到抛物线 ,抛物线 与线段BE交于点M,若直线CM把△BCE的面积分为1:2两部分,则抛物线 应向右平移几个单位长度可得到抛物线

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题:

1)(﹣12018+32﹣(π3.140

2)(x+32x2

3)(x+2)(3xy)﹣3xx+y

4)(2x+y+1)(2x+y1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某一工程招标时,接到甲.乙两工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元.目前有三种施工方案:

方案一:甲队单独完成此项工程刚好如期完成;

方案二:乙队单独完成此项工程比规定日期多5天;

方案三:若甲.乙两队合作4天,剩下的工程由乙队单独做也正好如期完成.

哪一种方案既能如期完工又最节省工程款?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下列要求,解答相关问题.
(1)请补全以下求不等式﹣2x2﹣4x>0的解集的过程.
①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).
②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为( );并用锯齿线标示出函数y=﹣2x2﹣4x图象中y>0的部分.
③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x>0的解集为﹣2<x<0.请你利用上面求一元一次不等式解集的过程,求不等式x2﹣2x+1≥4的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.

(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是;当m=5,n=2时,如图2,线段BC与线段OA的距离为

(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.

(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC、CD于E、F.

[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]

(1)如图甲,当顶点G运动到与点A重合时,求证:EC+CF=BC;

(2)知识探究:

①如图乙,当顶点G运动到AC的中点时,请直接写出线段EC、CF与BC的数量关系(不需要写出证明过程);

②如图丙,在顶点G运动的过程中,若,探究线段EC、CF与BC的数量关系;

(3)问题解决:如图丙,已知菱形的边长为8,BG=7,CF=,当>2时,求EC的长度。

[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请根据图中提供的信息,回答下列问题

(1)一个暖瓶与一个水杯分别是多少元?

(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定: 这两种商品都打九折乙商场规定:买一个暖瓶赠送一个水杯。若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.

查看答案和解析>>

同步练习册答案