【题目】如图,在梯形中,,,.点为边的中点,以为顶点作,射线交腰于点,射线交腰于点,联结.
(1)求证:;
(2)若是以为腰的等腰三角形,求的长;
(3)若,求的长.
【答案】(1)见解析;(2)或;(3).
【解析】
(1)先根据相似三角形的判定证出:,从而得出,再结合已知条件可得:,从而证出:.
(2)根据腰的情况分类讨论:①若BM=EM=3时,根据相似三角形的性质,可证出:FM=EF,CF=FM,从而证出:∠B=∠FMB,再根据平行线的判定即可得:MF∥AB,连接DM根据平行四边形的判定可得:四边形ABMD是平行四边形,从而证出:MD∥AB,故可判定此时D、F重合,从此得出EF=FM=FC=DC=6;②若BM=BE=3时,易证EF为梯形ABCD的中位线,从而求出EF;
(3)根据相似三角形的性质和已知条件可得:,过点作,过点A作,然后求出cosB,设,则,根据勾股定理:,根据BH+HM=BM即可求出BE.
(1)在梯形中,
,,
,
,
又,
.
.
.
,
,即.
又,
.
(2)∵,点为边的中点
∴BM=
①若BM=EM=3时
∵,
∴,
∴FM=EF
∵
∴
∴CF=FM
∴∠C=∠FMB
∴∠B=∠FMB
∴MF∥AB
连接DM
∵AD=BM=3,AD∥BM
∴四边形ABMD是平行四边形
∴MD∥AB
∴此时D、F重合
∴EF=FM=FC=DC=6;
②若BM=BE=3时,
∴E为AB的中点
∵
∴
∴CF=CM=3
∴F为CD的中点
∴EF为梯形ABCD的中位线
∴EF=
综上所述:或.
(3),,,
.
过点作,过点A作
∴BN=
∴cosB=
设,
则,根据勾股定理:,
∵BH+HM=BM
∴,
.
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x+6与反比例数y=(x>0)的图象交于点A(1,m),与x轴交于点B,与y轴交于点D.
(1)求m的值和反比例函数的表达式;
(2)观察图像,直接写出不等式2x+6->0的解集
(3)在反比例函数图像的第一象限上有一动点M,当S△BOM<S△BOD 时,直接写出点M纵坐标的的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知ABCD中,AB=16,AD=10,sinA=,点M为AB边上一动点,过点M作MN⊥AB,交AD边于点N,将∠A沿直线MN翻折,点A落在线段AB上的点E处,当△CDE为直角三角形时,AM的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线: 与轴、轴分别交于点B、C,经过B、C两点的抛物线与轴的另一个交点为A.
(1)求该抛物线的解析式;
(2)若点P在直线下方的抛物线上,过点P作PD∥轴交于点D,PE∥轴交于点E,
求PD+PE的最大值;
(3)设F为直线上的点,以A、B、P、F为顶点的四边形能否构成平行四边形?若能,求出点F的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售水果时,将A、B、C三种水果采用甲、乙、丙三种方式搭配装箱进行销售,毎箱的成本分别为箱中A、B、C三种水果的成本之和,箱子成本忽略不计.甲种方式每箱分别装A、B、C三种水果6kg、3kg、1kg,乙种方式每分別裳A、B、C三种水果2kg、6kg、2kg,甲每箱的总成本是每千克A成本的15倍,每箱甲的销售利润率为20%,每箱甲比每箱乙的售价低25%;丙每箱在成本上提高40%标价后打八折销售获利为每千克A成本的1.2倍,当销售甲、乙、丙三种方式的水果数量之比为2:1:5时,则销售的总利润率为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形中,,对角线,相交于点,点,分别从,两点同时出发,以的速度沿,运动,到点,时停止运动,设运动时间为,的面积为,则与的函数关系可用图象表示为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com