【题目】某学校为了解学生体能情况,规定参加测试的每名学生从“立定跳远”,“耐久跑”,“掷实心球”,“引体向上”四个项目中随机抽取两项作为测试项目.
(1)小明同学恰好抽到“立定跳远”,“耐久跑”两项的概率是;
(2)据统计,初三(3)班共12名男生参加了“立定跳远”的测试,他们的分数如下:95、100、90、82、90、65、89、74、75、93、92、85.
①这组数据的众数是 , 中位数是;
②若将不低于90分的成绩评为优秀,请你估计初三年级参加“立定跳远”的400名男生中成绩为优秀的学生约为多少人 ?
【答案】
(1)
(2)90;89.5;200人
【解析】解:(1.)列表如下:1表示“立定跳远”,2表示“耐久跑”,3表示“掷实心球”,4表示“引体向上”
1 | 2 | 3 | 4 | |
1 | ﹣﹣﹣ | (2,1) | (3,1) | (4,1) |
2 | (1,2) | ﹣﹣﹣ | (3,2) | (4,2) |
3 | (1,3) | (2,3) | ﹣﹣﹣ | (4,3) |
4 | (1,4) | (2,4) | (3,4) | ﹣﹣﹣ |
所有等可能的情况数为12种,其中恰好抽到“立定跳远”,“耐久跑”两项的情况有2种,则P= = ,
故答案为: ;
(2.)①根据数据得:众数为90;中位数为89.5,
故答案为:90;89.5;
(1)列表得出所有等可能的情况数,找出恰好抽到“立定跳远”,“耐久跑”两项的情况数,即可求出所求的概率;(2)①根据已知数据确定出众数与中位数即可;②求出成绩不低于90分占的百分比,乘以400即可得到结果.
②解:12名男生中达到优秀的共有6人,根据题意得: ×400=200(人),
则估计初三年级400名男生中“立定跳远”成绩为优秀的学生约为200人
科目:初中数学 来源: 题型:
【题目】如图,航空母舰始终以40千米/时的速度由西向东航行,飞机以800千米/时的速度从舰上起飞,向西航行执行任务,如果飞机在空中最多能连续飞行4个小时,那么它在起飞_____小时后就必须返航,才能安全停在舰上?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学对学校倡导的“压岁钱捐款活动”进行抽样调查,得到一组学生捐款的数据,
下图是根据这组数据绘制的统计图,图中从左到右长方形的高度之比为2:4:5:8:6.又知此次调查中捐款20元和25元的学生一共28人.
(1)他们一共调查了多少学生?
(2)写出这组数据的中位数、众数;
(3)若该校共有2000名学生,估计全校学生大约捐款多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC
(1)用直尺和圆规作△ABC的边BC上的高AD,并在线段AD上找一点E,使E到AB的距离等于ED(不写作法,保留作图痕迹);
(2)若AB=AC=5,BC=6,求出ED的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(﹣6,n),与x轴交于点C.
(1)求一次函数y=kx+b的关系式;
(2)结合图象,直接写出满足kx+b>的x的取值范围;
(3)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程解应用题:
(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?
(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?
(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方体的展开图如图所示,如果正方体的六个面分别用字母A,B,C,D,E,F表示,当各面上的数分别与它对面的数互为相反数,且满足B=1,C=﹣a2﹣2a+1,D=﹣1,E=3a+4,F=2﹣a时,求A面表示的数值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.
(1)如图1,若点O在BC上,求证:AB=AC.
(2)如图2,若点O在△ABC内部,求证:AB=AC.
(3)猜想,若点O在△ABC的外部,AB=AC成立吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系xOy中,点P的坐标为(m+1,m-1).
(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;
(2)如图,一次函数y=-x+3的图象与x轴、y轴分别相交于A,B,若点P在△AOB的内部,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com