精英家教网 > 初中数学 > 题目详情

【题目】一块材料的形状是锐角三角形ABC,BC=120mm,4D=80mm, .把它加工成正方形零件如图1,使正方形的一边在BC,其余两个顶点分别在AB,AC.

(1)求证:;

(2)求这个正方形零件的边长;

【答案】1)见解析;(2)正方形零件的边长为48mm

【解析】

1)根据正方形性质证∠AEF=B ,∠AFE=C即可;(2)由,故,解方程可得.

(1)证明:∵四边形EGFH为正方形,

BC// EF,

∴∠AEF=B,∠AFE=C

;

(2)解:设正方形零件的边长为xmm,则KD=EF=xmm, AK= (80-x) mm

EF// BC,

,

ADBC,

解得x=48.

答:正方形零件的边长为48mm.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.

1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 

2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与x轴交于A(﹣10),B30)两点,与y轴交于点C03.

1)求此抛物线所对应函数的表达式;

2)若M 是抛物线对称轴上一个动点,求当 MA+MC 的值最小时 M 点坐标;

3)若抛物线的顶点为D,在其对称轴右侧的抛物线上是否存在点P,使得PCD为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班学生做用频率估计概率的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是(  )

A.抛一枚硬币,出现正面朝上

B.从标有123456的六张卡片中任抽一张,出现偶数

C.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球

D.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答:

1)每千克茶叶应降价多少元?

2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB4BCECD边上一点,将BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若tanBAF,则CE_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形中,垂直平分.从点出发,沿方向匀速运动,速度为;同时,点从点出发,沿方向匀速运动,速度为;当一个点停止运动,另一个点也停止运动.过点,交于点,过点,分别交于点.连接.设运动时间为,解答下列问题:

(1)为何值时,点的平分线上?

(2)设四边形的面积为,求的函数关系式.

(3)连接,在运动过程中,是否存在某一时刻,使?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+3a≠0)经过A30),B41)两点,且与y轴交于点C

1)求抛物线y=ax2+bx+3a≠0)的函数关系式及点C的坐标;

2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;

3)如图(2),连接ACE为线段AC上任意一点(不与AC重合)经过AEO三点的圆交直线AB于点F,当OEF的面积取得最小值时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了测量重庆有名的观景点南山大金鹰的大致高度,小南同学使用的无人机进行观察,当无人机与大金鹰侧面在同一平面,且距离水平面垂直高度GF100米时,小南调整摄像头方向,当俯角为45°时,恰好可以拍摄到金鹰的头顶A点;当俯角为63°时,恰好可以拍摄到金鹰底座点E.已知大金鹰是雄踞在一人造石台上,石台侧面CE12.5米,坡度为10.75,石台上方BC10米,头部A点位于BC中点正上方.则金鹰自身高度约(  )米.(结果保留一位小数,sin63°≈0.89cos63°≈0.45tan63°≈1.96

A.B.C.D.

查看答案和解析>>

同步练习册答案