精英家教网 > 初中数学 > 题目详情

【题目】已知:点A、C、B不在同一条直线上,AD∥BE
(1)如图①,当∠A=58°,∠B=118°时,求∠C的度数;

(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;

(3)如图③,在(2)的前提下,且有AC∥QB,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE的值.

【答案】
(1)解:在图①中,过点C作CF∥AD,则CF∥BE.

∵CF∥AD∥BE,

∴∠ACF=∠A,∠BCF=180°﹣∠B,

∴∠ACB=∠ACF+∠BCF=180°﹣(∠B﹣∠A)=120°.


(2)解:在图②中,过点Q作QM∥AD,则QM∥BE.

∵QM∥AD,QM∥BE,

∴∠AQM=∠NAD,∠BQM=∠EBQ.

∵AQ平分∠CAD,BQ平分∠CBE,

∴∠NAD= ∠CAD,∠EBQ= ∠CBE,

∴∠AQB=∠BQM﹣∠AQM= (∠CBE﹣∠CAD).

∵∠C=180°﹣(∠CBE﹣∠CAD)=180°﹣2∠AQB,

∴2∠AQB+∠C=180°.


(3)解:∵AC∥QB,

∴∠AQB=∠CAP= ∠CAD,∠ACP=∠PBQ= ∠CBE,

∴∠ACB=180°﹣∠ACP=180°﹣ ∠CBE.

∵2∠AQB+∠ACB=180°,

∴∠CAD= ∠CBE.

又∵QP⊥PB,

∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,

∴∠CAD=60°,∠CBE=120°,

∴∠ACB=180°﹣(∠CBE﹣∠CAD)=120°,

∴∠DAC:∠ACB:∠CBE=60°:120°:120°=1:2:2.


【解析】(1)过点C作CF∥AD,依据平行公理的推论可知CF∥BE,接下来,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°-∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;
(2)过点Q作QM∥AD,依据平行公理的推论可知QM∥BE,接下来,根据平行线的性质、角平分线的定义可得出∠AQB=(∠CBE-∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;
(3)由(2)的结论可得出∠CAD=∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB的度数,将其代入∠DAC:∠ACB:∠CBE中可求出结论.
【考点精析】根据题目的已知条件,利用平行线的性质的相关知识可以得到问题的答案,需要掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商品涨价30%后欲恢复原价,则必须下降的百分数约为(
A.20%
B.21%
C.22%
D.23%

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一场NBA篮球比赛中,姚明共投中a2分球,b3分球,还通过罚球得到9分.在这场比赛中,他一共得了____________分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】情境观察:
(1)如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F. ①写出图1中所有的全等三角形
②线段AF与线段CE的数量关系是
(2)如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E. 求证:AE=2CD.
(3)如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC= ∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE. 要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正五边形各内角的度数为( )

A72° B108°  C120° D.144°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.请你判定四边形BMDN是什么特殊四边形,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下面各题
(1)计算:(3﹣ )(3+ )+ (2﹣
(2)解方程: +1=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为(
A.48°
B.36°
C.30°
D.24°

查看答案和解析>>

同步练习册答案