【题目】如图,在△ABC中,∠C=90°,CD⊥AB,垂足为D,AC=20,BC=15.动点P从A开始,以每秒2个单位长的速度沿AB方向向终点B运动,过点P分别作AC、BC边的垂线,垂足为E、F.
(1)求AB与CD的长;
(2)当矩形PECF的面积最大时,求点P运动的时间t;
(3)以点C为圆心,r为半径画圆,若圆C与斜边AB有且只有一个公共点时,求r的取值范围.
【答案】(1)25,12;(2)6.25;(3)r=12,15<r≤20.
【解析】
试题(1)在Rt△ABC中,先利用勾股定理求出AB的长,然后由面积关系求出CD的长;
(2)由相似关系可以求出PE、CE与t的关系,矩形PECF的面积最大,求点P运动的时间t;
(3)当圆与AB相切时,r=12,当圆与AB相交且只有一个交点时,15<r≤20.
试题解析:(1)在Rt△ABC中,AC=20,BC=15
∴
又
∴
(2)∵△APE∽△ABC,
∴
∴,即,
同理可求:
设矩形PECF的面积为S,S="1.2t(20-1.6t)" ,当t=6.25时,S有最大值.
(3)当圆与AB相切时,r=12,当圆与AB相交且只有一个交点时,15<r≤20.
考点: 1.勾股定理;2.二次函数;3.直线与圆的位置关系.
科目:初中数学 来源: 题型:
【题目】①对角线互相垂直且相等的平行四边形是正方形;
②平行四边形、矩形、等边三角形、正方形既是中心对称图形,也是轴对称图形;
③旋转和平移都不改变图形的形状和大小;
④底角是45°的等腰梯形,高是h,则腰长是h;
⑤一组对边平行,另一组对边相等的四边形是平行四边形.
以上正确的命题是( )
A. ①②③④ B. ①②④ C. ①②③ D. ①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在楼AB顶部的点A处测得楼前一棵树CD的顶端C的俯角为37°,已知楼AB高为18m,楼与树的水平距离BD为8.5m,则树CD的高约为________m(精确到0.1m).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有四张卡片(背面完全相同),分别写有数字1、2、﹣1、﹣2,把它们背面朝上洗匀后,甲同学抽取一张记下这个数字后放回洗匀,乙同学再从中抽出一张,记下这个数字,用字母b、c分别表示甲、乙两同学抽出的数字.
(1)用列表法求关于x的方程x2+bx+c=0有实数解的概率;
(2)求(1)中方程有两个相等实数解的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】袋子中装有3个带号码的球,球号分别是2,3,5,这些球除号码不同外其他均相同.
(1)从袋中随机摸出一个球,求恰好是3号球的概率;
(2)从袋中随机摸出一个球,再从剩下的球中随机摸出一个球,用树形图列出所有可能出现的结果,并求两次摸出球的号码之和为5的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班同学上学期全部参加了捐款活动,捐款情况如下统计表:
金额(元) | 5 | 10 | 15 | 20 | 25 | 30 |
人数(人) | 8 | 12 | 10 | 6 | 2 | 2 |
(1)求该班学生捐款额的平均数和中位数;
(2)试问捐款额多于15元的学生数是全班人数的百分之几?
(3)已知这笔捐款是按3:5:4的比例分别捐给灾区民众、重病学生、孤老病者三种被资助的对象,问该班捐给重病学生是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,为坐标原点,矩形的顶点,,将矩形绕点按顺时针方向旋转一定的角度得到矩形,此时边、直线分别与直线交于点、.
(1)连接,在旋转过程中,当时,求点坐标.
(2)连接,当时,若为线段中点,求的面积.
(3)如图2,连接,以为斜边向上作等腰直角,请直接写出在旋转过程中的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com