精英家教网 > 初中数学 > 题目详情

【题目】已知:四边形ABCD的对角线AC,BD相交于点O,给出下列4个条件:①AB∥CD;②OA=OC;③AB=CD;④AD∥BC.从中任取两个条件,能推出四边形ABCD是平行四边形的概率是( )

A. B. C. D.

【答案】C

【解析】

根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率,即可求出答案.

有①与②①与③①与④②与③②与④③与④六种情况,

①与④根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;

①与③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD为平行四边形;

①与②②与④根据对角线互相平分的四边形是平行四边形,能推出四边形ABCD为平行四边形;

所以能推出四边形ABCD为平行四边形的有4组,

所以能推出四边形ABCD是平行四边形的概率是

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,直径CD弦AB于E,AMBC于M,交CD于N,连接AD.

(1)求证:AD=AN;

(2)若AB=8,ON=1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料1:

对于两个正实数,由于,所以,即,所以得到,并且当时,

阅读材料2:

,则 ,因为,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值.

根据以上阅读材料,请回答以下问题:

(1)比较大小

(其中≥1) -2(其中<-1)

(2)已知代数式变形为,求常数的值

(3)= 时,有最小值,最小值为 (直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的边上异于一点,过点作直线截得的三角形与相似,那么这样的直线可以作的条数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在,点边上,于点

,求的长;

设点在线段上,点在射线上,以为顶点的三角形与有一个锐角相等,于点.问:线段可能是的高线还是中线?或两者都有可能?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课题学习:设计概率模拟实验.

在学习概率时,老师说:掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是.”小海、小东、小英分别设计了下列三个模拟实验:

小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;

小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上18个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;

小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.

根据以上材料回答问题:

小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线OM在第一象限,且与x轴正半轴的夹角为60°,过点D(6,0)DAOM于点A,作线段 OD的垂直平分线BEx轴于点E,AD于点B,作射线OB.AB为边在AOB的外侧作正方形ABCA1,延长A1C交射线OB于点B1,A1B1为边在A1OB1的外侧作正方形A1B1C1A2,延长A2C1交射线OB于点B2,A2B2为边在A2OB2的外侧作正方形A2B2C2A3……按此规律进行下去,则正方形A2017B2017C2017A2018的周长为______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,以ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.

(1)猜想BGEG的数量关系.并说明理由;

(2)延长DE,BA交于点H,其他条件不变,

①如图2,若∠ADC=60°,求的值;

②如图3,若∠ADC=α(0°<α<90°),直接写出的值.(用含α的三角函数表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC, ,∠C==30°,DABA于点A,BC=16cm, AD=__

查看答案和解析>>

同步练习册答案