精英家教网 > 初中数学 > 题目详情
20.为了测量一条河的高度,测量人员发现,该河两岸有一段是平行的,在河的一岸每隔4m有一棵树,在河的另一岸每隔40m有一根电线杆,你能想办法,测出河的宽度吗?
测量人员是这样做的:他们发现,站在离有数的河岸30m处看对岸,看到对岸相邻的两根电线杆恰好被两棵树遮住,并且在这两棵树之间还有一棵树,利用相似三角形的知识计算河宽,请你帮助测量人员计算一下河宽.

分析 画出几何图形:如图,点P为观测点,CD=40m,AB=8m,作PF⊥CD于F,交AB于E,则PE=30m,证明△PAB∽△PCD,然后利用相似比计算出PF,再求出EF的长即可得到河的宽度.

解答 解:如图,点P为观测点,CD=40m,AB=8m,
作PF⊥CD于F,交AB于E,则PE=30m,
∵AB∥CD,
∴△PAB∽△PCD,
∴$\frac{PE}{PF}$=$\frac{AB}{CD}$,即$\frac{30}{PF}$=$\frac{8}{40}$,
∴PF=150,
∴EF=PF-PE=150-30=120(m).
答:河宽为120m.

点评 本题考查了相似三角形的应用:利用影长测量物体的高度;利用相似测量河的宽度;借助标杆或直尺测量物体的高度.找出几何图形上相应线段的长是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.如图,⊙O的直径AB=8,点E在圆外,AE交⊙O于点F,C是圆心上一点,CD⊥AE于点D,AF=2CD=4$\sqrt{2}$.
(1)求BF的长;
(2)求证:CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形,请你以图中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.
(注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=$\frac{1}{2}$AB,点E、F分别为AB、AD的中点,求△AEF与多边形BCDFE的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.先化简,再求值:(1+$\frac{4}{{a}^{2}-4}$)•$\frac{a+2}{a}$,其中a=2+$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.小明想知道一碗芝麻有多少粒,于是就从中取出100粒涂上黑色,然后放入碗中充分搅拌后再随意取出100粒,其中有5粒是黑色芝麻,因此可以估算这碗芝麻有2000粒.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解不等式组:$\left\{\begin{array}{l}{\frac{1}{2}x-1≤6-\frac{3x}{2}}\\{5x-2≥3(x-3)}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.【问题提出】
如图1,把一个边长为1的正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;再将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处),求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l1围成图形的面积.
【问题解决】
三角形纸片在上述两次旋转过程中,顶点O运动所形成的图形是两段圆弧,即弧OO1和弧O1O2,顶点O所经过的路程是这两段圆弧的长度之和,即$\frac{120π}{180}$+$\frac{120π}{180}$=$\frac{4π}{3}$;这两段圆弧与直线l1围成的图形面积,等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和,即$\frac{120π}{360}$+$\frac{1}{2}×1×\frac{{\sqrt{3}}}{2}$+$\frac{120π}{360}$=$\frac{2π}{3}$+$\frac{{\sqrt{3}}}{4}$.
【类比应用】
如图2,把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片进行第一次旋转,即绕着顶点A按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;再将正方形纸片AO1C1B1进行第二次旋转,即绕点B1按顺时针方向旋转90°,…,按上述方法经过若干次旋转后.

请你解答下面两个问题:
(1)若正方形纸片OABC按上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;
(2)若正方形OABC按上述方法经过5次旋转,求顶点O经过的路程.
【拓展应用】
将正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是$\frac{41+20\sqrt{2}}{2}$π?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.反比例函数y=$\frac{{m}^{2}}{x}$图象经过点(1,4),且双曲线y=$\frac{m}{x}$位于二、四象限,则m=-2.

查看答案和解析>>

同步练习册答案