【题目】如图,抛物线y=x2﹣4x﹣1顶点为D,与x轴相交于A、B两点,与y轴相交于点C.
(1)求这条抛物线的顶点D的坐标;
(2)经过点(0,4)且与x轴平行的直线与抛物线y=x2﹣4x﹣1相交于M、N两点(M在N的左侧),以MN为直径作⊙P,过点D作⊙P的切线,切点为E,求点DE的长;
(3)上下平移(2)中的直线MN,以MN为直径的⊙P能否与x轴相切?如果能够,求出⊙P的半径;如果不能,请说明理由.
【答案】(1)点D的坐标为(2,-5);(2)DE=6;(3)能够相切,理由见解析.
【解析】
(1)利用配方法即可将函数解析式变形为:y=(x-2)2-5,由顶点式即可求得这条抛物线的顶点D的坐标;
(2)由经过点(0,4)且与x轴平行的直线与抛物线y=x2-4x-1相交于M、N两点(M在N的左侧),即可求得M与N的坐标,即可求得P的坐标,然后即可求得PE与PD的长,根据切线的性质,由勾股定理即可求得DE的长;
(3)根据已知,可得点P的横坐标为2,又由以MN为直径的⊙P与x轴相切,可得抛物线过点(2+r,r)或(2+r,-r),将点的坐标代入解析式即可求得r的值,则可证得以MN为直径的⊙P能与x轴相切.
(1)∵y=x2-4x-1=x2-4x+4-5=(x-2)2-5,
∴点D的坐标为(2,-5);
(2)∵当y=4时,x2-4x-1=4,
解得x=-1或x=5,
∴M坐标为(-1,4),点N坐标为(5,4),
∴MN=6.P的半径为3,点P的坐标为(2,4),
连接PE,则PE⊥DE,
∵PD=9,PE=3,
根据勾股定理得DE=6;
(3)能够相切.
理由:设⊙P的半径为r,根据抛物线的对称性,抛物线过点(2+r,r)或(2+r,-r),
代入抛物线解析式得:(2+r)2-4(2+r)-1=r,
解得r=或r=(舍去),
把(2+r,-r)代入抛物线得:(2+r)2-4(2+r)-1=-r,
解得:r=,或r=(舍去).
科目:初中数学 来源: 题型:
【题目】如图①是一个直角三角形纸片,∠A=30°,将其折叠,使点C落在斜边上的点C处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,若折痕DE的长是cm,则BC的长是( )
A. 3cm B. 4cm C. 5cm D. 6cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平行四边形ABCD中,O为对角线BD的中点,EF经过点O分别交AD、BC于E、F两点,
(1)如图1,求证:AE=CF;
(2)如图2,若EF⊥BD,∠AEB=60°,请你直接写出与DE(DE除外)相等的所有线段.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+y1y2=0,且A,B均不为原点,则称A和B互为正交点.比如:A(1,1),B(2,﹣2),其中1×2+1×(﹣2)=0,那么A和B互为正交点.
(1)点P和Q互为正交点,P的坐标为(﹣2,3),
①如果Q的坐标为(6,m),那么m的值为多少;
②如果Q的坐标为(x,y),求y与x之间的关系式;
(2)点M和N互为正交点,直接写出∠MON的度数;
(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,圆心F在正方形CDEF的外部,求线段OE长度的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程.
求证:该方程必有两个实数根;
设方程的两个实数根分别是,,若是关于x的函数,且,其中,求这个函数的解析式;
设,若该一元二次方程只有整数根,且k是小于0的整数结合函数的图象回答:当自变量x满足什么条件时,?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)
(1)若顾客选择方式一,则享受9折优惠的概率为多少;
(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点C'处,连接C'D交AB于点E,连接BC',当△BC'D是直角三角形时,DE的长为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠BAC=30°,斜边AB=2,动点P在AB边上,动点Q在AC边上,且∠CPQ=90°,则线段CQ长的最小值=__________ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在三角形中,把一边的中点到这条边的高线的距离叫做这条边的中垂距.
例:如图①,在△ABC中,D为边BC的中点,AE⊥BC于E,则线段DE的长叫做边BC的中垂距.
(1)设三角形一边的中垂距为d(d≥0).若d=0,则这样的三角形一定是________,推断的数学依据是________.
(2)如图②,在△ABC中,∠B=45°,AB=,BC=8,AD为边BC的中线,求边BC的中垂距.
(3)如图③,在矩形ABCD中,AB=6,AD=4.点E为边CD的中点,连结AE并延长交BC的延长线于点F,连结AC.求△ACF中边AF的中垂距.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com