精英家教网 > 初中数学 > 题目详情

【题目】学校植物园沿路护栏的纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示,已知每个菱形图案的边长为10cm,其中一个内角为60°.

(1)求一个菱形图案水平方向的对角线长;

(2)d26,纹饰的长度L能否是6010cm?若能,求出菱形个数;若不能,说明理由.

【答案】(1)一个菱形图案水平方向的对角线长30cm(2)纹饰的长度L能是6010cm,菱形个数为231个.

【解析】

1)连接ACBD交于点E,利用菱形的性质及∠A=60°可得出ABD为等边三角形,进而可得出∠ABE=60°,在ABE中,通过解直角三角形可得出AE的长度,再将其代入AC=2AE中即可求出结论;

2)设菱形的个数为x,利用L的长度=AC的长度+d的长度×(菱形的个数-1),即可得出关于x的一元一次方程,解之即可求出x的值,由该值为正整数可得出纹饰的长度L能是6010cm,此题得解.

(1)连接ACBD交于点E,如图所示.

∵四边形ABCD为菱形,∠A60°

ABADAC2AEAEBD

∴△ABD为等边三角形,

∴∠ABE60°

ABE中,AB10cm,∠ABE60°,∠AEB90°

AEABsinABE15cm

AC2AE30cm

∴一个菱形图案水平方向的对角线长30cm

(2)设菱形的个数为x

依题意,得:30+26(x1)6010

解得:x231

∴纹饰的长度L能是6010cm,菱形个数为231个.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一副含角的三角板叠合在一起,边重合,(如图1),点为边的中点,边相交于点,现将三角板绕点按顺时针方向旋转(如图2),在的变化过程中,点相应移动的路径长共为____.(结果保留根号)

    

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是(  )

A. m=﹣3时,函数图象的顶点坐标是(

B. m>0时,函数图象截x轴所得的线段长度大于

C. m≠0时,函数图象经过同一个点

D. m<0时,函数在x>时,yx的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+bx+c与直线yx+3分别相交于AB两点,且此抛物线与x轴的一个交点为C,连接ACBC.已知A03),C(﹣30).

1)求抛物线的解析式;

2)在抛物线对称轴l上找一点M,使|MBMC|的值最大,并求出这个最大值;

3)点Py轴右侧抛物线上一动点,连接PA,过点PPQPAy轴于点Q,问:是否存在点P使得以APQ为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线ABykx1分别交x轴、y轴于点AB,直线CDyx+2分别交x轴、y轴于点DC,且直线ABCD交于点EE的横坐标为﹣6

(1)如图①,求直线AB的解析式;

(2)如图②,点P为直线BA第一象限上一点,过Py轴的平行线交直线CDG,交x轴于F,在线段PG取点N,在线段AF上取点Q,使GNQF,在DG上取点M,连接MNQN,若∠GMN=∠QNF,求的值;

(3)(2)的条件下,点E关于x轴对称点为T,连接MPTQ,若MPTQ,且GNNP43,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:平行四边形ABCD中,EAB中点,AFFD,连EFACG,则AGGC_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:

(1)九(1)班的学生人数为   ,并把条形统计图补充完整;

(2)扇形统计图中m=   ,n=   ,表示“足球”的扇形的圆心角是   度;

(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰直角三角形中,,点的中点,将绕点旋转至的位置,使,其中点的运动路径为弧,连接,则图中阴影部分的面积为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为坐标原点,抛物线y=﹣x2+2mx+3m2x轴相交于点BC(点B在点C的左侧),与y轴相交于点A,点D为抛物线的顶点,抛物线的对称轴交x轴于点E

1)如图1,当AO+BC7时,求抛物线的解析式;

2)如图2,点F是抛物线的对称轴右侧一点,连接BFCFDF,过点FFHx轴交DE于点H,当∠BFC=∠DFB+BFH90°时,求点H的纵坐标;

3)如图3,在(1)的条件下,点P是抛物线上一点,点P、点A关于直线DE对称,点Q在线段AP上,过点PPRAP,连接BQQR,满足QB平分∠AQRtanQRP,点K在抛物线的对称轴上且在x轴下方,当CKBQ时,求线段DK的长.

查看答案和解析>>

同步练习册答案