精英家教网 > 初中数学 > 题目详情
4.如图,在Rt△ABC中,∠BAC=90°,AB=3,cosB=$\frac{3}{5}$,将△ABC绕着点A旋转得△ADE,点B的对应点D落在边BC上,联结CE,那么CE的长是$\frac{24}{5}$.

分析 先利用余弦定义计算出BC=5,再利用勾股定理计算出AC=4,接着根据旋转的性质得AB=AD,AC=AE,∠BAD=∠CAE,利用三角形内角和定理易得∠ACE=∠B,作AH⊥CE于H,由等腰三角形的性质得EH=CH,如图,在Rt△ACH中,利用cos∠ACH=$\frac{CH}{AC}$=$\frac{3}{5}$可计算出CH=$\frac{3}{5}$AC=$\frac{12}{5}$,所以CE=2CH=$\frac{24}{5}$.

解答 解:∵∠BAC=90°,AB=3,cosB=$\frac{AB}{BC}$=$\frac{3}{5}$,
∴BC=5,
∴AC=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∵△ABC绕着点A旋转得△ADE,点B的对应点D落在边BC上,
∴AB=AD,AC=AE,∠BAD=∠CAE,
∵∠B=$\frac{1}{2}$(180°-∠BAD),∠ACE=$\frac{1}{2}$(180°-∠CAE),
∴∠ACE=∠B,
∴cos∠ACE=cosB=$\frac{3}{5}$,
作AH⊥CE于H,则EH=CH,如图,
在Rt△ACH中,∵cos∠ACH=$\frac{CH}{AC}$=$\frac{3}{5}$,
∴CH=$\frac{3}{5}$AC=$\frac{12}{5}$,
∴CE=2CH=$\frac{24}{5}$.
故答案为$\frac{24}{5}$.

点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决本题的关键是证明∠ACE=∠B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.如图,在“妙手推推推”的游戏中,主持人出示了一个9位数,让参加者猜商品价格.被猜的价格是一个4位数,也就是这个9位中从左到右连在一起的某4个数字.如果参与者不知道商品的价格,从这些连在一起的所有4位数中,任意猜一个,求他猜中该商品价格的概率(  )
A.$\frac{1}{9}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为1000米的地方,空气含氧量约为267克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.
(1)求出y与x的函数表达式;
(2)求出海拔高度为0米的地方的空气含氧量.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图将4个长、宽分别均为a、b的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是(a+b)2-(a-b)2=4ab.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如果x=6是方程2x+3a=6x的解,那么a的值是(  )
A.4B.8C.9D.-8

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,四边形ABCD沿直线l对折后重合,如果AD∥BC,则结论①AB∥CD;②AB=CD;③AC⊥BD;④AO=CO中正确的是(  )
A.①②③④B.①③④C.②③④D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知四边形ABCD,点P、Q、R分别是对角线AC、BD和边AB的中点,设$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(1)试用$\overrightarrow{a}$,$\overrightarrow{b}$的线性组合表示向量$\overrightarrow{PQ}$;(需写出必要的说理过程)
(2)画出向量$\overrightarrow{PQ}$分别在$\overrightarrow{a}$,$\overrightarrow{b}$方向上的分向量.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,△ABC三个顶点的坐标分别为A(-3,-1)、B(-4,-3)、C(-2,-5).
(1)在图中作出△ABC关于x轴对称的图形;
(2)求S△ABC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,其中⊙O1,⊙O2,…⊙On,为n个(n≥2)相等的圆,⊙O1与⊙O2相外切,⊙O2与⊙O3相外切…,⊙On-1与⊙On相外切,⊙O1,⊙O2,…,⊙On都与AB相切,且⊙O1与AC相切,⊙On与BC相切,求这些等圆的半径r(用n表示).

查看答案和解析>>

同步练习册答案