精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y1=x+1的图象与反比例函数y2= 的图象交与A(1,M),B(n,﹣1)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO,BO.得出以下结论:
①点A和点B关于直线y=﹣x对称;
②当x<1时,y2>y1
③SAOC=SBOD
④当x>0时,y1 , y2都随x的增大而增大.
其中正确的是( )

A.①②③
B.②③
C.①③
D.①②③④

【答案】C
【解析】解:把A(1,M),B(n,﹣1)两点代入y1=x+1得m=2,n=﹣2,
则A点坐标为(1,2),B(﹣2,﹣1),
所以点A和点B关于直线y=﹣x对称,所以①正确;
当x<﹣2或0<x<1时,y2>y1 , 所以②错误;
SAOC=SBOD , 所以③正确;
当x>0时,y1都随x的增大而增大;y2都随x的增大而减小,所以④错误.
故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】正方形ABCD内接于⊙O,如图所示,在劣弧 上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:

(1)四边形EBFD是矩形;
(2)DG=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:

请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从长度分别为2、3、6、7、9的5条线段中任取3条作为三角形的边,能组成三角形的概率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在 中,以 为直径的⊙O,交 于点 ,且 ,交线段 的延长线于点 ,连接 ,过点 于点

(Ⅰ)求证:
(Ⅱ)在 的内部作 ,使 分别交于 于点 ,交⊙O于点 ,若 ,求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,Rt△ABC,∠ACB=90°,BC=6,AC=8,O为BC延长线上一点,CO=3,过O,A作直线l,将l绕点O逆时针旋转,l与AB交于点D,与AC交于点E,当l与OB重合时,停止旋转;过D作DM⊥AE于M,设AD=x,SADE=S.

(1)用含x的代数式表示DM,AM的长;
(2)当直线l过AC中点时,求x的值;
(3)用含x的代数式表示AE的长;
(4)求S与x之间的函数关系式;
(5)当x为多少时,DO⊥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,抛物线l1:y=ax2﹣4ax+5+4a(a<0)的顶点为A,直线l2:y=kx+3过点A,直线l2与抛物线l1及y轴分别交于B,C.

(1)求k的值;
(2)若B为AC的中点,求a的值;
(3)在(2)的条件下,直接写出不等式ax2﹣4ax+5+4a<kx+3的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.
(1)在图1中,画出一个以AB为边的平行四边形;
(2)在图2中,画出一个以AF为边的菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知双曲线y= (k>0)与直线y=k′x交于A、B两点,点A在第一象限,试回答下列问题:

(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时, ≤k′x;
(2)如图2,过原点O作另一条直线l,交双曲线y= (k>0)于P,Q两点,点P在第一象限.

四边形APBQ一定是
(3)若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.
(4)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由.

查看答案和解析>>

同步练习册答案