精英家教网 > 初中数学 > 题目详情

【题目】如图,已知正七边形ABCDEFG,请仅用无刻度的直尺,分别按下列要求画图.
(1)在图1中,画出一个以AB为边的平行四边形;
(2)在图2中,画出一个以AF为边的菱形.

【答案】
(1)解:如下图所示:


(2)解:如下图所示:


【解析】(1)连接AF、BE、CG,CG交AF于M,交BE于N.四边形ABNM是平行四边形.(2)连接AF、BE、CG,CG交AF于M,交BE于N,连接DF交BE于H,四边形MNHF是菱形.
【考点精析】认真审题,首先需要了解平行四边形的性质(平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分),还要掌握菱形的性质(菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).

(1)求抛物线的函数表达式;
(2)若点P在抛物线上,且SAOP=4SBOC , 求点P的坐标;
(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1=x+1的图象与反比例函数y2= 的图象交与A(1,M),B(n,﹣1)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO,BO.得出以下结论:
①点A和点B关于直线y=﹣x对称;
②当x<1时,y2>y1
③SAOC=SBOD
④当x>0时,y1 , y2都随x的增大而增大.
其中正确的是( )

A.①②③
B.②③
C.①③
D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y= (x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则 的值为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2﹣2 ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.

(1)直接写出a的值、点A的坐标及抛物线的对称轴;
(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;
(3)证明:当直线l绕点D旋转时, + 均为定值,并求出该定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,⊙O的直径AB=12,P是弦BC上一动点(与点B,C不重合),∠ABC=30°,过点P作PD⊥OP交⊙O于点D.
(1)如图2,当PD∥AB时,求PD的长;
(2)如图3,当 = 时,延长AB至点E,使BE= AB,连接DE. ①求证:DE是⊙O的切线;
②求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解
我们知道,1+2+3+…+n= ,那么12+22+32+…+n2结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即12 , 第2行两个圆圈中数的和为2+2,即22 , …;第n行n个圆圈中数的和为 ,即n2 , 这样,该三角形数阵中共有 个圆圈,所有圆圈中数的和为12+22+32+…+n2

(1)将三角形数阵经两次旋转可得如图2所示的三角形数阵,观察这三个三角形数阵各行同一位置圆圈中的数(如第n﹣1行的第一个圆圈中的数分别为n﹣1,2,n),发现每个位置上三个圆圈中数的和均为 , 由此可得,这三个三角形数阵所有圆圈中数的总和为3(12+22+32+…+n2)= , 因此,12+22+32+…+n2=
(2)根据以上发现,计算: 的结果为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案