| A. | ①②④ | B. | ②③④ | C. | ①②③ | D. | ①②③④ |
分析 根据等腰直角三角形的性质可得∠CAD=∠B=45°,根据同角的余角相等求出∠ADF=∠BDE,然后利用“角边角”证明△BDE和△ADF全等,判断出③正确;根据全等三角形对应边相等可得DE=DF、BE=AF,从而得到△DEF是等腰直角三角形,判断出①正确;再求出AE=CF,判断出②正确;根据BE+CF=AF+AE,利用三角形的任意两边之和大于第三边可得BE+CF>EF,判断出④错误.
解答 解:∵∠B=45°,AB=AC,
∴△ABC是等腰直角三角形,
∵点D为BC中点,
∴AD=CD=BD,AD⊥BC,∠CAD=45°,
∴∠CAD=∠B,
∵∠MDN是直角,
∴∠ADF+∠ADE=90°,
∵∠BDE+∠ADE=∠ADB=90°,
∴∠ADF=∠BDE,
在△BDE和△ADF中,$\left\{\begin{array}{l}{∠CAD=∠B}&{\;}\\{AD=BD}&{\;}\\{∠ADF=∠BDE}&{\;}\end{array}\right.$,
∴△BDE≌△ADF(ASA),
故③正确;
∴DE=DF、BE=AF,
∴△DEF是等腰直角三角形,
故①正确;
∵AE=AB-BE,CF=AC-AF,
∴AE=CF,
故②正确;
∵BE+CF=AF+AE
∴BE+CF>EF,
故④错误;
综上所述,正确的结论有①②③;
故选:C.
点评 本题考查了全等三角形的判定与性质、等腰直角三角形的性质、同角的余角相等的性质;熟练掌握等腰直角三角形的性质,并能进行推理论证是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com